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ABSTRACT

This thesis is concerned with a two- (non-degenerate) level
quantum system Interacting with a classical monochreomatic radiation
field.

The existing work on this problem is reviewed and some novel
aspects of the problems are presented. The new contributions are:
(1) The problem is treated in a more general manner than

previously: all values of the four essential parameters are

considered; a diagram shows which of thirteen methods is optimum
for a given parameter range; each of these methods is derived and
discussed; and, three of these methods (T3, TS5 and T8) are novel.

(2) Using the Floquet (1883)-Poincare (1892,1893,1899) theory

and following Shirley (1963,1965), the time-dependent parts of the
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wavefunction are Fouriér analyzed to obtain an equation analogous to
a static "Schrodinger Equation." The Fourier Expansion Coefficients
~ play the role of an orthonormal complete basis. The Flogquet
characteristic exponent, u , plays the role of energy. Zeroth-order
exact degeneracies occur when the time-dependent perturbation is weak
and its angular frequency is very large. Here, standard degenerate
Rayleigh—SchrSdinger perturbation theory is used to give novel
solutions (715).

(3) Resonances correspond to zeroth-order almost degeneracies
in the static problem. Certain-Hirschfelder (1970a,b,c) partitioning
perturbation theory (T6 and T7) is used to overcome difficulties
inherent in using Salwen's (1955) (used by Shirley) or Winter's (1959)
almost degenerate perturbation theories.

(4) When no near or exact zeroth-order degeneracies occur in
the static problem, non-degenerate Rayleigh-Schrddinger
perturbation theory is used to obtain Tl-solutions. It is shown
that these solutions are equivalent to Sen-Gupta's (1970) solutions
(T2).

(5) The Langhoff-Epstein-Karplus (1972) factorization of the
time-dependent wavefunction is applied to the two-level system and,
novel approximations, (T3), to the two Floquet Solutions are thereby
obtained.

(6) Solutions for the two-level system are obtained by using

the Langhoff-Epstein-Karplus (1972) formalism (which was formulated

ii



for the infinite-level system). The adiabatic turn-on is explicitly
considered and the following important properties of.the‘resulting
solutions are emphasized:

(a) The solutions are of the Floquet form: @(E,t) exp [-iut]
where ¢ is a space—-dependent function periodic in the time, and u
is a constant.

(b) The solutions illustrate Young and Deal's (1970) adiabatic
theorem which asserts that an adiabatic turn-om of a periodic
perturbation puts a system in a Floquet Mode Solution.

(¢) The solutions converge asymptotically whenever the energy
_spiitting divided by angular frequency almost equals a non-zero
positive integer because of almost vanishing denominators. The

Langhoff-Epstein-Karplus solutions for the infinite-level system
near resonances should have the same sort of asymptotic convergence
difficulties.

(7) If a(t) and b(t) are the wavefunction's time—dépendent
coefficients, then, the equations for (a(t)/b(r)) and (b(tr)/a(r))
are treated by singular perturbation theory (I8) to obtain the two
Floquet Solutions for a(t) and b(1) as power series expansions
in powers of the angular frequency divided by the energy splitting.
This novel treatment is peculiar, since, the singular perturbation
sclutions

(a) do not, in general, behave like outer solutions.

[ "
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{b) may be used to generate both linearly independent Floquet

Solutions without ever having to find "inner solutions."

(8) The Floquet—Poincaré Theory allows af{t) and th) to be
of the form <t¢(t)exp[-iut] where ¢ is periodic and q is .
constant. Whereas previous authors have not even considered this,

in Chapter II1 a proof that it cannot occur is given.
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INTRODUCTION

Motivation

The Semi-Classical Theory of the interaction of radiation and
matter combines the great triumph of Nineteenth Century physics,
Maxwell's Equations, with the great triumph of Twentieth Century
Physics, the laws of quéntum mechanics. In the Semi-Classical
Theory, the electromagnetic radiation is described by Maxwell's
Equations, and, the radiation field is thereby specified with
arbitrary accuracy. The material system, however, is described by
the laws of quantum mechanics.

Although, as Dirac (1927) first showed, the field may also be
quantized, the Semi-Classical Theory alone explaing many pheénomena.
Wentzel (1927) described the photoelectric effect, Klein and
Nishina (1929) correctly explained the scattering of radiation from
a free electron and Klein (1927) treated absorption and stimulated
emission of radiation by an atom, without quantizing the field.
Bloembergen (1965) has treated nonlinear optics in a completely
Semi-Classical manner. In fact, it is generally conceded that the
radiation field needs to be gquantized only in treating such
phenomené as the Lamb Shift and the Spontaneous Emission of radiation.

In this thesis we are concerned with the simplest Semi-Classical

system: one in which the quantum system has only two energy levels
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and the classical radiation field is monochromatic. In spite of its
simplicity, it is an important system. A thorough understanding of
it is a necessary prelude to the thorough understanding of a many-
leveled quantum system in a classical field. 1Tt is an interesting
system since it exactly corresponds to a spin %ﬁ particle in a
sinusoidally oscillating electric or magnetic field, It is also a
good model for a many-leveled system in which only two states
strongly interact under the influeﬁce of the time-varying field.

The two-level system is Semi-Classically described by two first
order, coupled, linear, homogeneous differential equations with
periodic coefficients, Floquet (1883) studied the solutions of the
general n~th order linear differential equation.with periodic
coefficients and Poincare (1892,1893,1899) investigated the practical
construction of such solutions, Moulton (1920,1930) completely
describes the solutions for n first order coupled, linear,
homogeneous differential equations with periodic coefficients. From
these studies, the functional form of the solution to the two-level
system is known. In spite of this fact, a closed form solution has
never been found. Many authors have sought approximate solutions
and their studies appear under such diverse titles as "Stark Effect
in Rapidly Varying Fields"* and "Optical Pumping and Related Topics."+

Furthermore, the appropriate approximate technique depends on the

%
Autler and Townes (1955).

T geries (1970).
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field's strength, its frequency and the magnitude of the energy
splitting.

No review of the two-level problem appears in the literature,
and, there is therefore a need for a systematic, complete review
of the problem. This thesis is an attempt to fill that need.
However, this thesis is more than a review since it discusses some
novel aspects of the problem. These new contributions are:

(1) Treating the problem in a more general fashion than
previcus authors:

{a) 1If wa(g) and ¢b(£) are the wavefunctions for the two
states and V(r) dis the spatial part of the time-dependent
perturbgtion, then most authors consider Vab = <¢a(E)KV(E)|wb(£)>
but neglect Vaa. and V.. . We consider Vaa and Vbb as well
as Vab .

(b) We introduce into the Hamiltonian, an operator ; which
allows for transitions cut of either of the two levels which are not
caused by the time-dependent perturbation. However, ; does not

allow for spontaneous transitions from the upper to the lower state,

(¢) All possible values of the four essential parameters

occurring in the problem are considered.

(d) A diagram, Figures VI-A and VI-B, is given which shows
which technique is best to use for any particular choice of
parameters. There are eight different perturbation methods and

three numerical techniques which are optimum for different ranges

of the parameters. This diagram summarizes cur study of the
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convergence and range of applicability of a total of nine perturbation
techniques and fouf numerical techniques.

(2) Using the Floquet (1883)-Poincaré (1892,1893,1899) Theory,
we follow Shirley (1963,1965) and Fourier analyze the time-dependent
parts of the wavefunction to obtain an equation analogous to a
static "Schrodinger Equation." The Fourier Expansion Coefficients
play the role of an corthonormal basis set which spans the space of
the "time-independent Hamiltonian." The Floquet characteristic
exponent, Uu , plays the role of energy. When the angular frequency
of the time-dependent perturbation is much larger than any of the
system's resonance frequencies, there is a zeroth-order double
degeneracy between each of the Fourier components of state a and
the corresponding Fourier component of state b . Our new
contribution is to solve tﬂe problem of the perturbation's effect
by using standard degenerate Rayleigh~Schrodinger Perturbation
Thecry. This ﬁew metﬁod is T5.

(3) Resonances occur whenever the ratio of the energy splitting
to the pertﬁrbation‘s angular frequency is almost equal to a
positive non-zerc integer, n . In the static formulation, this
correspondé to a zeroth-order almost degeneracy between the j-~th
Fourier Component of state a and the (j-n)-th Fourier Component
of state b . This correspondence has been noted before by Winter
(1959) and Shirley (1963,1965)., Our contribution is

(a) using the Certain-Hirschfelder (1970a,b,c) partitioning

perturbation theory to handle these resonant almost~degeneracies (T6,T7).
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(b) demonstrating that Certain-Hirschfelder theoxry ig the
preferred way to treat these almost degeneracies,

Shirley treated them by using Salwen's (1955) almost degenerate
perturbation theory which, as we prove in Chapter XI, will not yield
exact results even if carried to infinite order. Winter's scheme
(which is Heitler's (1960) perturbation theory extended to handle
almost degeneracies) cannot be used to treat the non~hermitian static
Hamiltonian which arises when the rate of non-radiative transitions
out of state a does not equal the rate of non-radiative transitions
out of state b . We use "non-radiative transitions” to mean those
transitions not caused by the time-dependent perturbation (i.e, those
caused by the introduction of the operator ? into the Hamiltonian).

(4) We take note of the fact that when the time-dependent
perturbation's angular frequency is less than the highest resonant
frequency but pnot almost equal to any of the resonance frequencies
or zero, then no Fourier Coefficients are almost or exactly degenerate.
Here, standard non-degenerate Rayleigh-Schrodinger perturbation theory
is used to obtain approximate solutions (Tl) which are equivalent to
the solutions obtained by application of Sen Gupta’s (1970) technique
(T2). Our contribution here is to show that even though T2 dees not
involve a reduction of the original time-dependent problem to a
static problem, it is equivalent to dding so and then using standard
non-degenerate Rayleigh-Schrddinger Perturbation Theory.

(5) Langhoff, Epstein, and Karplus (1972) develop a formalism

for finding the steady-state solutions for the general quantum
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system, i.e., the soclutiomns which arise when the quantum system i1s
in one of its non-~degenerate stationary states before the time-

dependent periodic perturbation is adiabatically turned-on. An

aspect of their treatment is writing the time~dependent wavefunction
as a time- and spsce-dependent periodiec part multiplying an
exponentiated part, The argument of the exponent only depends on
time and it consists of terms linear in time and terms periodic in
time. Our minor contribution here is the simple application of their
factorization to the two-level system to obtain novel approximate
solutions (T3) to the two linearly independent Floquet Solutions.

(6) The Langhoff, Epstein, and Karplus (1972) paper gives a
method of finding the steady-state solutions for a general quantum
system., Their formalism is applied to the two-level system and
gsolutions are thereby obtained. The adiabatic turn-on is explicitly
considered and the following points about the two-level solutions
are emphasized:

(a} The solutions are of the Floquet form: o(xr,t)exp-int] ;
where ¢ depends on spatial coordinates and is periodic in the time,
and p is constant.

(b) The solutions illustrate Young and Deal's (1970) assertion
that turning a periodic perturbation on adiabatically brings the
system into a Floquet Normal Mode Solution.

(e} The solutions converge asymptotically whenever the ratio of
the energy splitting to the perturbation's angular frequency is

almost equal to a positive non-zero integer because of almost
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vanishing denominators. The same convergence difficulties should
occur when the Langhoff-Epstein~Karplus technique is applied to the
infinite=level system near a resonance.

We have privately communicated the foregoing convergence
analysis to §. Epstein and P. Langhoff and they said they were aware
of these difficulties. No such analysis, however, appears in the
literature and we therefore feel that putting this discussion of
convergence in print is a contribution.

(7) Another novel contribution is the use of singular perturbation
theory, in Chapter XIII, to find linearly independent Floquet Solutions
as a power series expansion in (1l/g), where, & 1is the energy
splitting divided by the angular frequency. These solutions converge
in a range of parameters mnot covered by any previous perturbation
treatments: the regime in which both the field strength and energy
splitting are iarge aOmpared.to the angular frequency of the time-
dependent perturbation. Singular perturbation theory is used to
find outer solutions for (a(t)/b(t)) and (b(t)/a(t)) where a(1)
and b(T) are the time-dependent coefficients of ¢a(£) and ¢b(§) .
The Floquet Solutions for a(t) and b{t} are then recovered from
these quotients. A unique feature of this treatment is that inmer
solutions are never needed: the outer solution for (a(t)/b(7)) 1is
the inner solution for (b(t)/a(r)) and vice-versa. We have not
found any other example of singular perturbations having this unique

feature.
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(8) We prove that general sclutioms for a(r) and b(r) which

contain terms of the form

'r:b(‘r)ew:‘i']'rr

(where 1 1is a constant and ¢{t) is a periodic funection), may

never occur, (See Chapter III.)

Summary

The two-level system's Semi-Classical Hamiltonian is written
down in Chapter I. None of the spatial-interaction-operator's
matrix elements are allowed to vanish and we phenomenologically allow
for non-radiative transitions out of edther of the two levels by the
introduction of an operator ? . (? does not, however, take into
account spontaneous transitions from the upper to the lower of the
two states,)

The Dirac form of solution is assumed:

¥(z,£) = n () (r) +’ﬂb(t)¢b(r)

where the two states are labelled ¥a" and "b" . From the
Schrédinger Equation, we derive differential equations for g and
nb°

In Chapter II, a new independent variable, T , is introduced
and new functions a(rx) and b(r) are defined in terms of Ny and

N - Eqs. (II-4) and (II-5) are taken as the working equations for
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the entire thesis since they contain only four independent parameters,
whereas, the equations for n, and Ny contain eight independent
parameters. The four independent parameters are called o, B; € and
§ . o and B are related to the field strength and the magnitude of
the spatial-interation-operator's matrix elements, e is related to
the energy separation between levels and & is related to the rate
of non-radiative transition out of either of the two levels.

In Chapter III, we describe the three possible functional forms
of the exact general solution., Proofs of these are given in Appendix
A, The genefal solutions are arbitrary linear combinations of two
normal (or Floquet) modes. These Floquet modes involve a characteristic
constant (or expoment), u , and periodic functions, ¢ , which have the
same periodicity as the cosT-—perturbation. One of the three possible
forms (Form III: see Eq. (III-12)) contains terms linear in 1 . We
give a proof that solutions of this form cannot occur for the two-level
system, whereas, previous authors have not even considered the
possibility of Form III solutions, Chapter IIT also includes
derivations of some useful properties of the exact solutions.

There are four limits in which exact solutions to Eqs. (II-4)
and (II-5) are known. These are discussed in Chapter IV, We find,
however, that no one perturbation technique solves the problem for
arbitrary values of a, B, § and ¢ . In fact, nine different
perturbation techniques (Techniques Tl through T9) are described in
this thesis, For some values of a, B, 6 and € , no perturbation

solutions have been found and numerical techniques must be used,
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Four such numerical techniques are given and they are Techniques
T10 through T13.

The thirteen techniques are listed in Table VI in Chapter VI.
This table gives the descriptive name of each technique, its range
of applicability and where; in this thesis; it is discussed,
Figures (VI-A) and (VI-B) diagrammatically indicate which technique
is best depending on the values of a, B, & énd € . Throughout this
thesis, care has been taken to note the range of convergence of each
and every perturbation technique. Not all of the thirteen techniques
are totally distinct. Techniques Tl and T2 are, respectively, just
the static and dynamic formulation of the same approximation scheme.
Techniques T3 and T4 are equivalent if ¢ vanishes. T6 and T7 are
essentially identical and we split them up for organizational purposes,

Following Shirley (1963,1965), the dynamic problem of Eqs. (II-4)
and (II-5) is transformed into a static eigenvalue-eigenvector problem
in Chapter V, With this transformation, the whole arsemal of quantum
mechanical stationary state approximation techniques can be brought
into play. For example, non-degenerate Rayleigh=8chr3dinger
Perturbation Theory (its formulation and convergence is discussed in
Chapter VII).is used as Technique Tl. It is shown to be the statice
equivalent of Sen Gupta's (1970) treatment which is called T2,

In Chapter VIII we also describe T3: solving the equations for
the quotients a(1)/b(t) and b{r)/a(r) by a perturbation expansion
in the field strength. Although no other authors have specifically

treated the two-level problem in this manner, T3 is merely an
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application of a more general time-dependent perturbaticn theory given
by Langhoff, Epstein, and Karplus (1972). T4 is the Langhoff-Epstein-
Karplus (1972) "steady-state” perturbation theory and we hopefully

clarify their formalism by applying it rc the two-lievel system with

T5 is the application of degenerate Rayleigh=Schrodinger
perturbation theory to the static eigenvalue-eigenvector problem.
This technique, which is described in Chapter IX, yields novel
approximations to the problem.

When the radiation's angula£ frequency, w , is such that
finw = AW (where AW 1is the energy difference between states and
n is a positive non-zero integer), zercth order mear (or exact)
degeneracies occur in the static formulation of the problem. This
difficulty is overcome by using the Certain-Hirschfelder (1970a,b,c)
partitioning perturbation theory which is described and discussed in
Chapter X.

The case of 4w = AW corresponds to the main resonance. In
Chapter XI, the Certain~Hirschfelder theory ie applied teo this case
(T6). We alsoc discuss the treatments of the two-level system's
main resonance given by Rabi (1937), Bloch and Siegert (1940),
Stevenson (1940), Shirley {1963,1965), Silverman and Pipkin (1972),
Winter (1959) and Pegg (1973b). Where appropriate, these techniques
are compared to T6., Shirley’s formulation of the main resonance
differs from ours only in the perturbation theory used: he uses a

perturbation theory due to Salwen (1955), At the conclusion of
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Chapter XI we therefcre show how Salwen®s perturbation theory will
not give exact results even if ir is carried to infinite order.
Technique T7 is intreduczed iIn Chapter XIT and it is jﬁst the
Certain-Hirschfeldexr partitioning perturbation theory applied to the
sub-harmonic rescnances where sub-harmenic resonsances cccur whenever

hhrm * AW (n,. 1is a integer greater than unity). We find that

r
depending on the values ¢f np , F and N (where N is the order
of field strength through which the sclutions are correct), T7 is
equivalent to Tl, We, therefore, give Figure (XIT-A) which
diagrammatically tells when Tl is preferred over T7. Chapter XIT
concludes with a discussion of Shirley's (1963,1965), Pegg’s (1973b)
and Winter®’s (1959) work. Particular attention is paid to Winter's
(1959) treatment, because, althcugh his formulation is quite different
from T7, we show that his results are exactly the T7 results when

6 = 0 and "Certain-full-normalization™ is used in T7,

Chapter XIIT contains the most novel aspect of this thesis: the
application of singular perturbaticn theory to the two-level system
(T8), In Technique T8 we sclve the equatiom for b{(z)/a(r) to find
one Floquet Mode as a power series in inverse powers of e . We then
solve the equation for a(s)/b(v) teo find the cother Floquet Mode as
a power series in inverse powers of & . Even though singular
perturbation theory is utilized to obrain both soluticns, we obtain
the anomolous result that

(a) the singular perturbation selutions do not, in general,

behave like outer solutions.
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(b) the singular perturbarion solutions may be used to generate

both linearly independent Floquet soluticns. Thus, we never need to

find "inner sclutions.”

The {final perturbation rechnique, T9, is introduced in Chapter
XIV. T9 has been used by Shirley (1963) and Series (1970) and it is
extended to include non~vanishing values of the parameters B and
§ . This technique is useful when the applied field is quite strong
compared to the energy splikting between states, It is formulated as
a matrix eigenvalue-eigenvector problem which is solved by degenerate
Rayleigh=-Schrodinger Perturbation Theory.

The main body of this thesis concludes with four numerical
techniques which are to be used when mg'BQ 8 and £ are such that no
perturbation techniques are available. These numerical techniques
are introduced and compared in Chapter XV,

Chapter XVI countalns a recipe for using the Meadows (1962)-
Ashby (1968) numerical technique (T10). It consists of finding the
characteristic exponent, u , by solving a transcendental equation
for u which involves the dsterminant ¢f a p~independent infinite
matrix. The exact form of the transcendental equation depends on
whether § wvanishes and whether & is alwmost (or exactly) equal to
an even integer, We therefore distinguish between Case A (Eq. (XVI-2))
and Case B (Eq. (XVI~4)). These two equations are derived and the
chapter concludes with a discussion of numerically finding the Fourier

Expansion Coefficients cf the Floquet ”¢wfunctions,“
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T1l {the Autler-Tovmes {12553} nurericzal solution) is described
and dervived ia Chapter XVIL, Xt consists of finding u by
nvmaricalls -olvin: Eq. (VII-1; which iuv an equation equating u
with the sum ¢f twe dnfinite contimued fraciionz walch themselves
contain 1 . The Fourier Expansion Coe fledent are fovnd by
evaluating p~dependent infinite continuel fract eons. B wust wanirh
if Til is to be used.

Ti2 is introduced in Chapter XVIII, It is siwmply direct computer
diagonalization of a real, symmetric tridiagonal matrix, It cnly
applies when both 6§ and R wvanish,

The last numerical technique (T13) applies for arbitrary values
of o, B, § and & . It is diccussed in Chapter XIX¥ and it involves
direct mumerical sclution of Eqs. (II-4) and (II-5) for specified
initial conditions, These solutions are used to construct a 2 X 2
matrix, the eigenvalues of which are directly related to the
characteristic exponents (see Eq. (XIX-12)),.

There are two appendices. Appendix A contains an exposition of
Floquet Thecry and Appendix B contains a discussion of the equations
fov a™{ija{vy , u%{rjbp{r) and a*{t)b{t) . References are placed

after the appendices.



1. FORMULATION OF THE PRORLEM

The Hamiltonian for rhe cwo-level system is given by {(I-1).

{I-1)

=g

H = H*(r) + 2F¥(r)ccs we -

In (I-1}) 4 has been set equal to mity, Ho(g) is the Hamiltonian

for the unperturbed system for which
BY) . {xr) = W w, (T j=a.b .
R [ R

For couvenience we will define WB > W . F dis the field strength
E [=3
and the field interscts with the system threugh the interaction

operator V(r) . The operater v is defined by:
“ . I I - Y m wow (
Ty, (r) Y ¥,(c)  and wb(f.@ by (12

Y, ~and Yy are scalars. The effect of ; is to introduce damping
constants intc the wavefunctions. Thus, % takes Into account in a
phencmenological way transitions away frem levels ¢a and *b which
we are not explicitly considering (Weisskopf (1930). Also see
Maitland (1969), Chap. 3, Sec. 3}). These "away transitions” could

be, for instance, spentanenus relaxation by emission of radiation,



collisional de-excitation, or relaxation by giving up energy which
goes into lattice excitation. Whatever the "away transitions' are,
they can be taken into account by the inclusions of ; as long as
these transitions obey a linear rate law.

If y_ and vy, are not both zero, the normalization of the
wavefunction for the two state system is not preserved. Note that
this present formulation, with ? defined the particular way it has
5een defined, does not take into account spontaneous transitions
from the upper to the lower of the two states.

The time dependent Schrodinger equation for the system is:
iV(r,t) = HY¥(r,t) (1-2)

In (I-2), % has again been set equal to unity and the dot over V¥

denotes differentiation with respect to time. Assuming that
¥lr,t) = n (e)y (x) + ny, (B3, (x) (I-3)

substitution of (I-3) into (I-2) yields equations for n, and "y

. Y
i = Y -3 -2 _
n, Mg~ 1 5 na + 2FVaacos mtna + 2FVabcos wtnb (I-4)
: u 4"
ing, = Wn -1 > M + 2FVabcos wEn, + 2FVbbcos wtny (I-5)

<3
n

5 <wi(5>IV(5)|w (x)>
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(I-4) and (I-5) are the time-dependent equations about which we will

be concerned in the rest of this report.
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I1. STATEMENT OF WORKING EQUATTIONS

The time-dependent equations (I-4) and (I-5) can be simplified
by replacing na(t) and nb(t) by the new variables a(t) and

b(t) which are defined by

Fv
aa

I--<
o

t - 21

na(t) a(t)exp[—iwat - sin wt] (II-1)

i

' FV
nb(t) b(t)exp[—iwat - t - 24 za sin wt] (11-2)

M|m

Then if we let wt = T and define the following reduced parameters:

g = (WE - Wé)/w . o = Fvab/w
(11-3)
B o= F(Vy -V e, & =Yy - v /e
equations (I-4) and (I-5) become,
é(T) = -2ia(cost)b(T) : (IT-4)
B(t) = -i(c - 18 + 2Bcos 1)b(r) - 2ia(cost)a(t) (11-5)

We will take equations (II-4) and (II-5) to be the working

equations for the rest of this report. They are convenient



!
!
g

since they only invoiye four independent parameters whereas
equations (I-4) and (I-5) had eight independent parameters.

In Appendix B, th; time-dependent equations are expressed in
terms of the square o? the amplitudes a*(t)a(r) and b*(1)b(T)
as well as the correlation function a*(t)b(t) . However, these
equations are not used in the remainder of this report since they
offer no advantages in terms of simplifying the mathematics. For

the case of & = 0 , these amplitude equations are, however,

3
analogous to certain classical vector equations (Feynman (1957)) and
they therefore enable us to relate the two-~level time—-dependent

problem to the easily visualized problem of a constant-length three-

dimensional vector rotating in space.
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III. THE EXACT SOLUTION

Although we are ignorant of the exact solution of equations
(II-4) and (II-5) in terms of elementary functions, we know its
exact functional form from the Poincaré-Floquet* theory which is
explained in detail in Appendix A. The Poincaré-Floquet treatment is
used in many branches of applied mathematics. In the Present section
some of the theorems are given and specific applications to the present
problem are pointed out.

To fit equations (II-4) and (II-5) into the notation used in

Appendix A, let
xp = a(r) , =x, = b(1)

If there are two sets of particular solutions {a1(1), by(r)}
and {ap(r),bp(t)} , then, in the notation of Appendix 4, a;(r) =
X115 by(1) = %37 and a,(1) = %y, and by (1} = %5, .

If we further iet

&11(t) = 0 812(1) = =-2iacos t

621(7) = -2diacos T B55(1) = ~i(e - 18 + 2Bcos T)

*
Moulton (1930), Chap. XVI. For less detailed discussions see:
Ince (1956), Sect. 15.7.: Margenau (1956), pg. 80. Brillouin (1948 and

1950) alsc discusses the Poincaré-Floquet theory.
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Then équations (II-4) and (IT-5) become a special case of the

following set of homogeneous linear differential equations.

dxl (T)
e = 811(T)x1 (1) + 612 (T)x5(T)
(III-1)
dx; (1)
g = B21(0)x (1) + @y, (1)xa (D)

Floquet-Poincaré Theory for Periodic Equations

If, in (III-1), the time-dependent functions, eij s are

- periodic with the period of 27 ,
eij(T + 2%) = Bij(r) R (I1I-2)

then the solutions to (III-1) are arbitrary linear combinations of
two normal modes. The normal (or Floquet) modes involve a
characteristic constant (or exponent), p , and functions, ¢ .
The ¢'s have the same periodicity as the Hij's « Thus

(v + 2m) = (1) . (ITI-3)

(n.b., these are not to be confused with the "capped" &'s in Appendix A.)

ES

*
There are only three possible forms which the solution can take.

*
It should be noted that most statements of Floquet's theorem which
appear in the literature are incomplete, i.e. they only allow for "Form

I". Moulton (1930), however, gives 3 very complete statement and our

discussion, in Appendix A, is complete for the two-level system.
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Form I. (py; # po + 1, n any integer or zero)

The two modes are

—ipgT

{x; = e $11 » Xp = e-iulr¢21} (II1-4)

and

—j -1
e LisT = a HaT

$12 » X2 bon} (III-5)

{x)
These linearly independent solutions may be linearly combined to form
a general solution given by (III-6). The constants C; and C, are

chosen to satisfy initial conditions.

-iuqt . “fusT
X1 = Cie 1114+ Cre 204y,
(I1I-6)
b ATE s ~iust
xp = Ce $a1 + Coe $o2

Form IT. (u = u; = uyp +n , n any integer or zero)

When u; = y; + n , there are two possible forms of solutiom.

For one, the Floquet modes are

-iut

-1
{x; = e "To11, =x = e Mgy} (I11-7)

and

~iut

=-lut
{Xl = e P12 » Xp = g

o2} (111-8)



These may he combined to form the general solution.

-1i
X} = e uT(Cl¢11 + C2¢12)
(I11-9)

-i
e "T(C1op1 + Cpbpp)

Form ITII. (u = p; = Mo + n , n any integer or zero)

For the other type of solution corresponding to ) = wp; +n ,

the Floquet modes are

-1 -1
{x; = e "T417, = = e Mgy} (111-10)
and

{x; = e—iuT[T¢11 +¢12] s % = E_iuT[T¢21 + ¢22]1} (III-11)

which may be combined to form the general solution which can satisfy

arbitrary initial conditions.

x; = e_ipt(cl¢11 + Coltéry + ¢121)
(I11-12)
Xp = e_iuT(Cl¢21 + ColTda1 + 4221

Notice that the "Form III" solutions contain terms linear in v . No

such terms appear in the "Form I" or "Form II" solutionms.
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We wish to state at this point some theorems which will be
useful in later stages of the report and which will give us some

information in addition to the bare-boned Floquet results.

Relationship between Any Two Solutions

The first result we wish to state gives a relationship between
any two solutions. Assume we have found two solutions to (III-1).

If we form the quantity D(t) defined by

D(r) = x11(1)x22(1) - x12()x%21(1) ,

then in accord with Theorem I in Appendix A, we have the useful result

T
D(t) = D(TQ)GK{J[J (911(1:") + 922(1"))(1‘1?'] (III-13)
0

If we apply (IILI-13) to (II-4) and (II-5) and let g = 0 , we find

that
D{t) = D(0)exp[-ict - 8t - ZiBsin 7] (I1I-14)

The proof (III-13) is very simple and merely involves differentigting

D(t). to find

Qgéil = D{r)(e11(r) + O23(7)) .
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This is a differential equation for D(t) which may be immediately
solved to give (ITI-13).

From Eq. (III-14) it follows that for finite wvalues of 7 ,
D(t) can only be zero if D(0) = 0 . Furthermore, if D(0) = O ,
then D(tr) dis zero for all times. Thus, if two particular solutions,
{x11¢thx21(r)} and {x75(t),x22(1)} , correspond to a non-vanishing
value for D(0) , they form a fundamental set of solutions to Egs.

(II-4) and (II-5).

The Normalization Equation

We wish to now consider the function A(t) which is defined by:
% %
A1) = x1(1)x1(7) + 2p(T)x; (1)

{x1(1),x2(1)} is any solution to equations (III-1). Differentiating

A(t) we find, in general,

dA(T)

% T T
dar X1X1(811'+ 91])'+ XIXZ(GZI + 612)

® * * ®
+ X2X2(522 + 922) + X1X2(912 + 821)

For the special case of equations (II-4) and (II-5) for which

x; =a and xp = b , we have

d % % * :
I [a (T)a(z) + b ()b(1)] = =28b (t)b(T) (ITI-15)



(I1I-15)

tells us that for the case of & = 0 , A(1) is a constant

for all time., When & # O , this is not true.

Since Y¥(r,t) is given by Eq. (I-3) in terms of U and Ny

which are given by Egs. (II-1) and (¥I-2), the relationship between

* *
the normalization integral and A(r) = a a+ b b is

Thus, in
to time,
h

that Ya

and Yy

Let

manner:

W* d * *
(r,)¥(x,t)dr = nn_+nn

= A(m)exp{- (Ya/w)fl

order for the normalization to remain invariant with respect

it is necessary that, in addition to § = 0 (or Y, 5 Yy ),

0 . This is consistent with the statement that both Ya

remove particles from both state a and state b .

Knowledge of A Second Linear]ly Independent Solution

From Knowledge of Any Particular Solution:

§=0 and § # 0

us first rewrite equations (II-4) and (II-5) in the following

~ifb

W .
n

(I11-16)

e
)

-[ig + &}b - ifa

f(1) and g(1) are defined in the following manner:
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f(t) = 2acos T ; g(t) = €+ 28cos 1T .

We wish to consider (III-16) first when &§ = 0 and then when & # 0O .

Note that the results we derive will apply to any system in which

f(t) and g(r) are real functions and & 1s a real parameter.

Case I: & =0

Suppose that when & = (0 , we have found a particular solution to
(ITI-16) which we will call {a;,b;} . We can immediately write downm

another linearly independent solution which we will call {a,,bs} .

The second solution is given by

* -roliglde’
1&

as -b

(III-17)

® 5T '
by = aje Soliglar

From equation (ITI-17) it follows that
* %
D0y = a1a1+b1b1 = A(0)

For the solutions of (II-4) and (II-5) where g(t) = € + 2BcosT

and 6 = 0 , equation (III-17) becomes

® o em e
- ble let-2iRsinT

az

(ITI-18)
* —ier—-2igsint
a)e
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This second solution (I1I-17) may be derived by comparing
(III-15) and (III-13). For this case of & = 0O s equation (IXI-13)

becomes

-/pligldr!
a)(1)by (1) - by(1)as(r) = D(0)e ~0l*8 (III-19)

According to the normalization equation (equation (III-16)), we

have, when &6 = 0 ,
® *
ap(ma)(t) + b3()by(r) = A(D)
A(0) is some non-zero constant since we assume that {aj(t),b1{(7)}

is a non-trivial solution. Multiplying both sides of the normalization

equation by

T
(D(O)/A(O))EXP[-jo[ig]dr'] s

we find:
J_.l T 1 _ T '
2(8) [al(r)af(r) + bl(T)bT(T)]e“fo[igldT = D(O)e Soligldr
(III-20)

Comparison of (III-20) with (III-19) demonstrates the validity

of (III~-17).
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Case II: & # O

Here we are considering (III-16) for the case of § ¢ 0 .
Suppose that we have fuund a particular solution to (III-16) which we
will call {a1,bi} . Form the functions {a;,b;} by.replacing 8
wherever it appears in {a),b1} by (~§) . ‘{gi,hl} must obey the

following equationms:

a; = -ifp

By o= -lig - 6)b) - ifa

We asgert that another 1inéarly independent solution to (III-16) is

given by:

* 3
ag = = (by) exv[~[0[ig + §]dt']

T (II1-21)

by, = (El)*exp[-fo[ig,+ §ldt']

as long as g(t) énd f(t) may be expanded in a power series in T
for sﬁfficientlf_smali #alueslaf T . For the case of equations
(II-4) and (11—5) where f(t) = 20cost and g(v) = ¢ + 2Bcost
(here, thereforé, both f(T) and g(r) can be eipanded in power

series in 1 ), equation (III-21) becomes

®
aZ(T) = =~ (by) exp[-ietr - 81 - 2iBsint]
. o S (III-22)

* .
ba(t) = {(ay) exp[—i;T = 81 = 2igsint]
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The proof of (III-21) involves two steps. The first is showing
that the solution, {ap,bs} of equation (III-21), does indeed satisfy
(ITI-16). This is shown by simple differentiation of (III-21) and
utilization of the equations for él and él . |

The second step is showing that {a;,b;} and {ap,bp} are

linearly independent. The linear independence is shown by proving

that

%* % T _
aibz - bjaz = [aj{a;) + by(b1) ]exp[-j [ig + 8ldt'] # ©
: ]
Since g i1s by hypothesis pure real, the exponential term in the
ﬁfefibﬁs equation can certainly never equal zero for finite values
of 1t . The linear independence is therefore shown by demonstrating

that
* *
B{(t} = ajfay) + bj(h;) $# 0. (II1I-23)
Utilizing the differential equations for a;, b;, a; and b; , we may
easlly show that the derivative of B{r) with respect to T 1s zero.
Therefore,

* *
ay(a;) + by(by) = constant

We must show that this constant is non-zero. This is done by looking
at the solution to (III-16)} when all quantities are expressed in their

power series in 1T . We therefore assume
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£(rt) = f(o) + f(l)T + f(z)'r2 + ...
(III-24)

(0)

g(r) = ¢ + g(l)r + g(z)Tz + ...

0
If we look for the particular solution for which a(0) = a( ) .
b(0) = b(o) where a(o) and b(c) are arbitrary complex numbers

and both may not simultaneously be zero, for sufficiently small

values of T , we may write

a(t) = a(o) + a(l)T + 3(2)12 + .. _
(III-25)
b(r) = b(o) + b(l)r -+ b(z)rz + ...

Using the expansions (III-24) and (II1I-25) in (III-16), we find that
(n)

the resulting equations for the expansion coefficients, a and

b(n) » may be solved in terms of the arbitrary constants a(o) and

b(O) f(n), (n)'s .

and the given values of & , the s and the g

For instance,

(1)

R T A

p (D _ ig(o)b(o) _ 4@ (0 sp ()

If some particular solution is
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a = a@ a4,
(I1I-26)
b o= b LWy,
by definition we have,
a = a® 4 My
(111-27)
b= b 4 @ sy 4L,
Using (III-26) and (III-27) in (III-23) we find that
a@" + b = a®@(M)* 4 (0> (1T1-28)

The term on the right-hand side of (III-28) can never be zero unless

(0)

both a and b(o) are zero. This situation, by hypothesis,

cannot occur. Therefore, we have demonstrated that equations (ITI-21)

and (III-22) give linearly independent second solutionms.

"Form ITI" Solutions Can Never Occur for

Equations (III-16)

Provided that the functions f£(1) and g(r) which appear in

(ITI~16) are periodic so that

f(r) = £(r +P) ; g(t) = g(t+ P) ,



3-14

the first Corollary of Appendix A tells us that there is always one

particular solution to (III-16) of the form
-1 -i
al(t) = e “T¢a1(1) . bi(t) = e “T¢b1(r) . (II1-29)

Here, 1 1is a constant and ¢i(1) = ¢i(r + P) (1 = al,bl) . Certainly
the functions in (III-29) have no terms linear in 1t . According to
equation (III-21), we can write down another linearly independent

solution as

1% % T
) = ™ gy el 115 + slar')

" (II1-30)

. T
eiETQal(T)exp[-JD[ig + §]dr']

I

by (1)

The "barred" quantities are related to the "unbarred” éuantities by
replacing (8) wherever it appears in the "unbarred" quantities by
(-8) . Certainly, because of the way they have been defined, ag
and bp can have no terms in them which are linear in 1 . Since
{a1,b1} and {ap,bp} are linearly independent, all solutions to

(I1I-16) may be written as

7]
I

QIa]_ + Gzaz

o
!

c—lbl + Czb2
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C1 and (p are arbitrary constants. Therefore, there are no

solutions to (I;I—lﬁ)lhaving terms linear In T . We may therefore

conclude that "Form III" solutlons may never occur in equations (III-16).
The application of this present discussion to equations (II-4)

and (II-5) 1s that these equatlons may never have "Form ITI" solutions.

We cannot 3 priori tell, however, whether the solution is of "Form I"

or "Form II." As later sections of this report will show, we have

found "Form I" solutions to be the general rule, although we must

allow for "Form II" solutions for certain "accidental" values of the

parameters o, B, € and § .

The Characteristic Exponent for "Form II" Solutions

Let us assume that the Floquet Normal Mode solutions to (II-4)
and (II-5) are of "Form II". We therefore have two linearly

independent particular sclutions:

-i
o LHT

a) N bl = e

¢

al

e—iur b2 =

a; = ¢32 L) ¢b2

v is a constant and ¢ij(T) = (1t + 27)¢i = a,b , § = 1,2) .

Substituting these solutions into (III-14), we have

(03180, = bap0p,Je 2T = p(oyelTieT-dr-2ifsint] (111-31)
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Since the term in brackets on the left-hand side of (III-31) has
periodicity 27 as does exp[-2iBsint] , we may equate the linear
terms in the exponents in (III-31) to write the "Form IL"

characteristic exponent as

=

]
(-] [y

1
[N
Mo

The Characteristic Exponents for "Form I" Solutions

If the solutions to (II-4) and (II-5) are "Form I" solutions,

we may write two linearly independent solutions as

=1yqT iyt
a; e Ml ¢y o by = e "1 Py

=ipst -1
a, = e H2 .., by = e K2t

az dJbz

The u's are constants and u; # yy + n (n any integer or zero).
¢'s are periodic with periodicity 2r .

Substitutiné these solutions into (III-14), we have:

at SETERATPOE )e[~ier—6T-ZiBsinT]

ROV RN D

By the arguments we used above, we may write:
[¢a1¢b2 - ¢a2¢b1] = D{Q)exp{-2iBsint]

and

The
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Hy tup = e - 16 (II1-32)

If § =0, ﬁ is Pure Real

Write 1wy and yp, 1in terms of their real and imaginary

components:

uy = (ﬁ1)r + 1(u)y

g = (Uz)r + i(Uz)i
From Eq. "(III-32), when § = 0 ,
hpy = -(uz)i

Let the two Floguet Normal Modes be written according to:

=lusT
= J
aj e ¢aj

_ =iust
bj = g "J ¢bj

where j =1 or 2 . From Eqs. (III-18) we have:

%
- * - - .
e lugT ¢a2 - _ei(ul) T ¢b1 e leT e 2iBsinT
i 1( )* * i 21igsi
1y, T -igr -2igsint
e M2 bps e M1 bay © e
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Comparing left- and right-hand sides of the above equations, we have:

Tk
Mg = -(up) +e

Since € 1s by definition pure real,

(uz}i

If it is true that both

g = -(uz)i and

then it must be true that

)y = (g),

W)y = (), = 0

and therefore, 1f the Fldquet Normal Mode solutions are defined

according to

a = e"'inT ¢

3 aj

. - -illj'r
bj e : ¢bj

j=1,2

wvhen 6§ =10, uj is pure real. When & # 0 , “j will, in general,

" be complex.
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Exact Solutions in Terms of Fourier Coefficients

The Poincaré~Floquet theory has been used to derive complicated
but exact solutions to (II-4) and (II-5) by taking advantage of the
fact that the Floquet Form of solution is a periocdic function
multiplying an exponéntial function. Since we may write the soclution

to (II-4) and (II-5) as

a(t) = ¢ (e
(III-33)
bir) = rbb(r)e—iuT

where u is a constant and ¢j(r + 27) = ¢,{(1t) , we may further,

3

by using Fourier's Theorem, write,

¢a(T) = Z A.ej‘j'r ;. o (1) = "Z B eijT (II1-34)
e T b b
J__og j=-—-c°

Substituting (III-33) and (III-34) into (II-4) and (II-5), we obtain

an algebraic equation of the form
M- uDg = 0. (11I-35)

Here u 1is the characteristic exponent of expressions. (ITI-33),
I is the infinite unit matrix, M 1is an infinite square matrix the

elements of which involve the parameters e, §, o« and 8 as well as
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integers. C is an infinite column matrix whose elements are the

Fourier expansion coefficients. M has double indices so that a

typical element is Mk k'Lt where k or k' is either A or B
L] ] 3

and £ or &' is any (positive or negative) integer or zero. Thus

A,n represents Ah and the double indicet are used to aveid the

printing difficulty of a subscript on a subscript. The matrix

elements of M are

My, 454,93 = 3

Pp,58,5 = 1+e-48

_ (III-36)
W, gm,561 = @ = @y 4 in
o) 8

=" B,j:B,jt1 =

It is convenlent to write the rows or columms in the order
. 4,n; B,n; A,n-1; B,n-1;
(II1-35) is explicitly written out in equation {(V-5)} of this
report.

In order that there be a solution to (III-35) it is necessary

that

det|M - | = o0 (1I1-37)
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Note that (III-37) is an infinite secular equation which must be
solved to find u . Once u is known, the Fourier coefficients
Aj and Bj may be computed and thus the problem is solved.

From equation (III-37) of this section, we know that .if ‘the
solution is of Form I, once we know u; , we can immediately write
down up . The elements of M are given by (I1I-36) and if we lock
at (V-5) we see the infinite, square g matrix explicitly written

out. Inspection of M and consideration of equation (III-37) leads

us to this important result which is also stated in Appentdix A: iﬁ

py 1s a solution to (III-37),-so is u;+ n where n 1s any integer

including zero. The proof of this statement is simple. Because of

the periodic nature of the infinite matrix g s (g - Ulg) is the
same infinite matrix as (M - (y; + n)I)

Four numerical methods for finding the characteristic exponents
have been proposed. These are useful when the values of ¢, §, «
and £ are such that we are unable to find perturbation solutions.

Meadows (1962) and Ashby (1968) have shown, that for the two-
level problem, equation (III-37) may be manipulated to obtain a
simple transcendental equation for yp which involves an infinite
determinant which depends only on ¢, §, o, £ and known integers.
This infinite determinant is closely related, but not identical to
the determinant of the matrix M of equation (III-37). So if this
determinant is evaluated, u may be éxactly computed.

We give more details concerning this method in Chapter XVI

whete we describe how the Meadows-Ashby method can be used to find
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numerical values for the characteristic exponents. The application
~of this method to more complicated problems is found in Asﬁby's (1968)
article and in Ross's (1969) thesis.

Autler and Townes (1955) have obtained an exact formal selution
of equations (II-4) and (II-5) for the case of § =8 =0 .

Starting with (III-35), they obtain an equation for p in terms of
two Iinfinite continued fractions which themselves depend.on . In
Chapter XVII we trivially extend their work to include non-vanishing
¢ and describe how their formulas are used to numerically find p .
Unfortunately, their technique cannot be extended to take into
account non-vanishing g .

When &§ =8 = 0 , equation (III-35) reduces to the problem of
finding the eigenvalues and eigenvectors of a real, symmetric tri-
diagonal matrix. A direct numerical attack of this latter problem
is discussed in Chapter XVIII.

Shirley (1963) utilized equation (A~12) (see Appendix A} to
obtain numerical values of the characteristic exponents. The basic
input into (A-12) is the result of a numerical solution to equations
(II-4) and (II-5). We discuss this technique and the simplifications
which arise when either 6 or B (or both) vanish in Chapter XIX.

None of the four techniques mentioned above are useful in
obtaining formal perturbatlon solutions since such results obtained
from them can be more easily obtained by more familiar and more

direct methods. The four techniques are however important, since in
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the regimes where we have not been able to find simple perturbation

solutions, recourse must be made to one of the four techniques
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IV. LIMITS IN WHICH EXACT SOLUTIONS ARFE KNOWN

Although we do not know the exact solution of (II-4) and (II-5)
in terms of elementary functions,-We can solve (II-4) and (II-S) in
the following three limits:

(A o~+0
(B) ¢ >0and § + 0
© w0

Case (A): o~ 0

Here equations (ILI~4) and (II-5) become uncoupled and are

solved by simple quadrature to obtain

a(t) = a(0)

b(t) = b(0)exp[-iet - 8r - 2ifsint]

Case (B} ¢ >+ 0 and § » 0O

For this case, we can solve the resulting equations by changing

the independent variable to 2z = sint . Doing this we obtain

-2iob

]

da/dz
{(Iv-1)

-2ifb - 2ioa

i

db/dz
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Equations (IV-1) are simultaneous, homogeneous first order differential
*
equations with constant coefficients which may be easily solved to

give

a(r) = Ce thoinT Czehn-SinT
. (Iv=-2)
b(t) = (Zu)“l[Gl}\-'_e'"l)“f'si”"T + G e tA-sinT
Cy and €, are arbitrary constants and A+ is defined by
%
A+ = B % (32 + 4&2) (1V-3)

Case (C): w >0

In this case, coswt in equation (I-1) should bhe replaced by
unity. Thus, transforming the independent variable back frem T to

t , (II-4) and (II-5) become:

da/dt = -21FVabb

{TV-4)
ah/dt = 24FV .z — $T{W =1y - Lr:s = e g o
abp/at ab ;L(wa wa) /2.1.\Yb ‘Ya) + erVbb Vaa)]b

(IV-4) and (IV-1) are the same type of differential equation system

and we may easily solve (IV-4) to obtain:

*
See Protter (1964) and Morrey, Chap. 16, Sect. 10, or any book on

ordinary differential equatioms.
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- 1 - 1
a = Cje irje . Cpe ir'e
(IV-5)
- w —irlt -ix't
b o= (2FV,) 1[k+ple +° + Corle -7
where
AL o= Ylqt (g + L6F2(V_ )2 %)
t - ab
and
' ' i
q = (yb wa)_— /5(yb ) F 2RV, -V ) (1V-6)

We have briefly mentioned these solvable limits since the solutions
obtained in these limits will form the zeroth order starting points of
the perturbation techniques which we will use in the remainder of this

report.



V. _TRANSFO TION OF THE TIME-DEPENDENT PROBLEM TO A IIME-1HDEFINDENT
UANTUM MECHANICAL PROBLEM

IA section IIT of this report, we transformed the time-dependent
problem of equations (II-4) and (II-5) into a time—independent
eigenvalue-eigenvector problem which is succinctly stated by (ITI-35).
In this section we wish to restate the latter algebraic problem of
determining the value of the eigenvalue p and its corresponding
An, Bn eigenvectors in terms of well-known quantum mechanical
stationary state perturbation techniques using Dirac's bra-ket
notation to represent the Fourier coefficients. The matrix M
of (IITI-35) will correspond to the matrix of a Hamiltonian HF s U
will correspond to the energy of the system and (V-5) will become
the system's secular equation. As we will see, HF is a non-hermitian
operator. This fact has caused us no difficulty in subsequent sections
of this report. Doing this, we will be in effect showing that the
original time-dependent problem is equivalent to a stationary-state
quantum mechanical problem and we may then apply all of the powerful,
well-known perturbation techniques which are utilized to solve this
latter type of problem.

We should first recall that in section IIT we used Floquet's
Theorem (equation (III-33)) and Fourier's Theorem (equation (III-34))

to obtain the élgebraic equation given in (III-35). Following

Shirley (1963,1965), we can manufacture the following stationary-state
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quantum mechanical problem which is equivalent to the problem
expressed in (ITII-35).

First define a basis Ik,n} such that the index k can be
either A or B . Let the index n range from -= to o and let

the basis be orthonormal, i.e.,

8 (v-1)

<k,n!£,m> - sk,ﬂ n,m

The "deltas" on the right-hand side (V-1) are "Kronecker deltas" .and
are not to be confused with the parameter & which has no subseripts
on it.

Define the non-hermitian Floquet Hamiltonian, HF s S0 that

JIASJ> + u[lB,j + 1> + fB,j - 1=]

H_|A, 3>
o (v-2)

(G + e - i8)|B,3> + a[]A,j + 1> + |A,] ~ 15]

]

Hp|B,3> -

+ g[[B,j + 1> + |B,j - 1>]

If we ask "what are the eigenvalues of Hp

» we are, in effect,

asking for the solutions to the Schridinger-type equation
Hojws = pfw (v-3)

where u is an eigenvalue of HF and [u> is the associated

eigenvector. The function |u> can be expressed as a linear combination

of the complete set of basis functions ]A,j> and |B,j> so that
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> = 1 (]a,4> + B |B,3>) (V-4)
ooy 3
J
where the Aj's and Bj's are expansion coefficients. Substituting
(V-4) into (V-3), we may multiply the resulting equation in turn by

each and every bra <k’,n"| . Doing this we are led to equation

(V-5) which is the matrix representation of the following set of

equations:

1
o

3 <k',n']HF|k,n><k,n|u> ~ p<k',n'|p>

k,n (V-6)
k'=AorB; n'=-»tow

Here the <k',n'|HF|k,n> correspond to the elements of M and the
<k,n|u> correspond to the elements of the column vector € in
equation (III-35).

After we have found an eigenvalue, u , of H, and after we

F

have found the expansion coefficients A, and B, , the time-

dependent functions a(r) and b(r) may be recovered by the

following relationships:

a(t) = e—iuT z A,eijT v-7)
j=—m
b(x) = e T ¥ BjeijT (v-8)

N



-

0

(V-5)

yg



VI. 3 Y OF AND GUIDE T0 THE REMAINING SECTIONS

In the remainder of this report we are concérned with finding and
justifying perturbation solutions to Egs. (II-4) and (II-5). Since no
one perturbation scheme is useful for arbitrary values of o, B , §
and € , we find that each range of values for o, 8 , &8 and ¢ has
associated with it, its own appropriate perturbétion scheme. We shall
explain nine different perturbation schemes which lead to converging,
approximate expressions for the Flogquet Normal Mode particular solutions.
We will call these schemes Technique Tl, Technique T2, ete. For certain
ranges of the parameters no perturbation sclutions to (II-4) and (II-5)
have.been found. In these instances we will have to resort to one of
four numerical methods of solution which we will c¢all T10,...,T1l4.

In Figures (VI-A) and (VI-B), we have drawn a flow chart which
tells what technique to use for any values of the reduced parameters
a, B, 6§ and ¢ .- To use it, one must first specify the values of
g, § , o and B . In these charts, €nin 1s defined as the integer

which is closest to ¢ :

(If e dis half-integer, ¢ could have either of two values.) If

min

@ and B are both much smaller than unity we must specify N where N
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is the order of field strength (FN) through which we want the "¢-parts"
of the Floquet Normal Modes to be accurate.

The flow chart has been drawn so that when more than one technique
is applicable, the reader is led to the preferred technique. When no
one technique is clearly superior, the end box in the flow chart indicates
all the techniques which may be used.

In Table VI we indicate the names of the techniques, their locations
in the appropriate chapter of this report and the ranges for which
the techniqueé give quickly converging perturbation solutions. By
inspecting Table VI we can see that the techniques overlap. For example,
if o, B, ¢ and ¢ are all much less than unity we could use either

T9 or T5 to obtain approximate solutions.



TABLE VI. The descriptive names of the techniques, their locations in this report and their ranges

of applicability.

Technique Name Location Range of Applieability
Tl Non-degenerate Rayleigh-Schridinger VIII | Either
Field Strength Expansion @B << 1; § >> a,B
g arbitrary
T2 Sen Gupta's Technique VIII or
asB << 1; Igmin - e| »>> a,p
T3 Field Strength Expansion of VIII J § arbitrary
Quotient Equations
T4 Steady State Perturbation Theory VIII § = Yo=Y = 0, a,8 << 1
ngin - El > a8
T5 Degenerate Rayleigh-Schridinger IX tyRse,8 << 1
Field Strength Expansion
T6 Partitioning Theory for the Main X1 g = 1; a,B,f << 1
Resonance
T7 Partitioning Theory for the X1t € *mn;n_ = any integer greater
Subharmonic Resonances than 1; a,8,8 << 1
T8 (16 Expansion of Quotient Equations XIII g »> 1; & »> 20,28,6
T9 The (e - i6)-expansion X1V €,8 << 1; o and B arbitrary
T10 Meadows-Ashby Technique XVI 0,8,8,¢ arbitrary
T1ll Autler-Townes -Technique XVIT B =0; o,8,¢ arbitrary

-9



Technique Name Location Range of Applicability

T12 Rumerical Diagonalization of a Real, XVIII g=6=013 &, a arbirrary
Symmetric Tridiagonal Matrix
T13 Numerieal Solution of Eqs. (TI-4) XIX a, B, 8, &

arbitrary
and (II-5)

9-9
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In this section we romsider expanding the solutions to equations
(II-4} and (1I-5) in powers of the field strength F . This can be
accowplished by solving (V-3) by non-degenerate Rayleigh-Schrodinger
Perturbation Theoryﬂ* This would first involve splitting up H_ in

¥

the following manner:

= 10 (1)
HF HF + AHF (VII-1)
where A 1s an ordering parameter which is set equal to unity. We
will split up HF so that the zeroth order Hamiltonian, Hén) » 1ls
defined by

N
D183 = jlage

1

(VII-2)

i

H§,0>|B,j> (G +e - 18)]B,3>

The kets |k,n> (defined in Section V) are non-degenerate eigenfunctions

of Hég) » This pon-degeneracy is strict as long as § is non-vanishing.

*
A good concise treatment of non-degenerate Rayleigh-Schrodinger

Perturbation Theory is given in Chap. VII of Schiff's (1955) book.
For a more detailed treatment see the Hirschfelder (1964), Byers-Brown,

Epstein review article.



If & wvanishes and if e equals some integer. k (this worrseponds
to a resonance frequency), then accidental degeneracies may 2701
(i.e. in such a situation 1A,j> and !B,35 - k> wouid be degenerate).
When =« 1is nearly (or exactly) equal to an integer and & = 0 «o
that the zeroth order is almost {or exasrly! doubly degenetate,
parctitioning perturbation techniques (which are more generslly
applicable than Rayleigh-Schrodinger techn:ques) can be used to
obtain a solution (Certain, Hirschfelder (1970a)). Thiz is discussed
in Section IX.

The Héo) is Hermitian ﬁhen § = 0, but it is non-Hermitian

whern § # 0 . 1In the case that § # 0 ,

<k',n'[H(0)|k,n> = <k,n|H(OJ|k',n'>
F F
but
0). %, (),
<k',n'[(Hé )) ik,n> ¢ tk,n[HF [k'sn's
1
The Hé ) is defined by

Hél)]A,j> al|B,j+1> + |B,3-15]

(VII-3)

It

1
H; )18,5> a[|4,3+1> + [A,3-1>] + R[|B,j+1> + |B,3-15]



Note that the operator H depends only upon the parameters a

(1)
F
and £ , therefore in terms of the "non-reduced"” parameters, the
split-up of the hamiltonian which 1s described by (VII-2) and (VII-3)
is equivalent to a perturbation expansion in the field strength, F .
Hél) , unlike Héﬂ) s 18 a hermitian operator.

The usual non-degenerate Rayleigh-Schrodinger perturbation

theory assumes that we may find the solutions to

HF’u> = yulw (VII-4)

by expanding both y and |u> as power series in the ordering

parameter A , i.e.,

po= TR m, (VII-5)
n=0

po= 7m0 (VII-6)
n-0

IU(O)

> would, of course, be one of the [k,n> kets. Substituting
(VII-5), (VII-6) and (VII~1) into (VII-4), we may group together all
terms proportional to Al » set them equal to zero and solve the

resulting equations. For instance, a zeroth order equation is
(0) (o)
HF Ik:n> = Uk,nlk:n)‘

where

0 R
ué i 1s the zeroth order non-degenerate eigenvalue of [k,n> -
»
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Let us suppose that we are seeking the perturbed wavefunction

which arises from the zeroth order ket |kg,n0> . Therefore

(0) (0)
HF [kﬁ,n0> = ukg,ng|k0’no>
where
: Q
koung> = [u§®> .

The higher order corrections to |kg,np> , call them |u8m)> (m > 1) ,

may be expressed in terms of the spectrum of the unperturbed

hamiltonian, Héo) .
(w) Tr o (m)
lwg™> = v 7 ckmj]k,j>' (VII-7)
k=A,B j=-e 7
where the Cﬁmi's are the expansion coefficients and the primes on the

summations indicate that the state |kg,n0> is to be excluded. This

exclusion is perfectly all right if we stipulate that

<k0,ng]u§m)> = 0 m>1

This stipulation, in the jargon of perturbation theory, is usually

called "intermediate normalization." The point we wish to stress is
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*
that the expansion coefficients in (VII-7) are always products of

terms of the form:

<k,n]H§1)‘k',n'> ]
= u(o) —5 (VII-8)

k,n kganp

where kp,k,k' = A or B, np,n,n' = any integer or zero with the
stipulation that if k equals kg then n may not equal np ,

We wish to use (VII-8) in postulating a crude criterion of when a
non-degenerate Rayleigh-Schrddinger series should quickly converge.

The rule of thumb is this: the series should quickly converge if

(1) -

7 are chosen so that G (defined by (VII-8)) will

Héo) and BH
always be much less than unity. We say thié, since, if G 1is always
much less than unity then we can be sure that the component of the
zeroth order ket, [k,n> » in the m-th oxder correction, Iugm)> R
will be smaller and smaller as m gets larger and larger. We will
further assume that if the wavefunction is quickly converging, the
energy will also quickly converge. Our criterion is hardly
sophisticated, but we will take it as a working postulate.

If we now ask, "Under what conditions will a non-degenerate

Rayleigh-Schrédinger perturbation treatment converge if H_ is split

F
up according to (VII-2) and (VII-3)?" , we can answer this by looking at

. .
See equations (II.17), (II.18) and (II.19) in Mirschfelder's (1964)

review.
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(VII-8) and by trying to determine the conditions under which G will
be small. It will certainly be small if the magnitude of the
denominator is much larger than the magnitude of the numerator.

A or B, n# ng

It

Case 1I: k = kg

A or B, then from equation {VII-2), we can see that

If k

L3

since n can never equal ng , the quantity

(0) _ (0}
uk,n uko,ng

-will be some (positive or negative) integer. It's smallest magnitudé
is therefore unity. Since the numerator of G can only be g, g or 0
when its deneminator must be unity or larger, we get the first
requirement for the quick convergence of the non-—degenerate Rayleigh-

Schradinger perturbation series, namely: ~

both o« and B << 1 (VII-9)

Case I1: k # ky; n = ng

If k#ky and n = ng , the magnitude of the denominator of @
will be [e - iéi +  The numerator of G will be ay, B or 0. Thus,
in addition to the requirement that = and £ be much less than

unity, we rmust impose the condition

both o and R << g ~ 18 (VII-10)

for the non-degenerate Rayleigh-Schrodinger series to quickly converge.
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Case III: k # kp; n # ng

This is the last possibility we must consider. Again, the
numerator of G can either be o, B or 0 . The denominator of @

for this case is
{n - ng-t {(e - 15)).

where the plus sign is taken if k = B and the minus sign is taken
otherwise. The quantity (n - ng) may never equal zero. We therefore
obtain the last reqﬁirement for the quick convergence of the perturbation

series:

both o and B << [n - np % (e - 18)] (VII-11)

where (n - ng) is some non-~zero integer. We may combine (VII-11)
and (VII-10) into one expression and therefore conclude that the

non-degenerate Rayleigh—SchrEdinger perturbation series will quickly

converge if both of the following conditions are satisfied

both o« and g << 1 (VII-12a)
and o and B << [N - ¢+ i6| where N (VIT-12b)

ig any integer or zero.

To determine the ranges of parameters for which (VII-12b) holds,

we should first recall that the complex quotient
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—_— :
Z2_+ 12, q, T iqy

where vy, Zr’ Zi’ a and are all real numbers will be small

1
(i.e. both 4. and 9y will be much less than unity) 4if

(a) Zr >> ¥

{b) Z, >y

(c) both Zr and Zi are much great than vy .

Next define Kmin to be the integer which makes the quantity

Ik

- E] as small as possible. K . could be zero, if & < 0.5 .
min min

If & 1is half integer then there is a trivial ambiguity in Kmin .

In any case, Kmin has been defined so that for a given vélue of
£, 0= [K .- e| < 0.5 .
— "min -
With this definition of Kmin y We can say that the
non-degenerate Rayleigh-Schrodinger perturbation series will quickly

converge if either condition (a) or condition (b) is fulfilled:

{(a) both ©w and B << 1 ; &6 > o and B ; & arbitrary,

(b) both o and £ << 1 ; |K - e[ >> a and B ; &

min
arbitrary. Kmin is the integer which makes
IK - al as small as possible.

min

(VII-13)

If the conditions given by (VII-13) are not met, then other
techniques must be used. These other techniques form the basis for

the rest of this report.



8-1

VIII. FOUR FIFID STRENGTH EXPANSION

In this section we discuss four techniques for exﬁanding the Floguet
Normal Modes in a series expansion in powers of the field strength F .

In "Technique T1" the non-degenerate Rayleigh-Schrddinger perturbation
theory is used in terms of the bras and kets which we intreduced in
Section V and which are related to the Fourier expansion coefficients.

"Technique T2" involves the original differential equations (II-4)
and (II-5). It involves solving them by perturbation theory without
making any Fourier expansions.

In "Technique T3" instead of directly solving the equations for
a(t) and b(r) , we focus our attention on the differential equations
for the quotients (a{t)/b(t)) and (b(t)/a(1)) . We sclve for these
quotients by a perturbation expansion in the field strength without
making any Fourier expansions. /

"Technique T4" is Jjust standard steady state perturbation theory.*

This is a technique which yields particular solutions for the functions

na(t) and nb(t) in (I-3) under the restriction that Y, =Y, = 0.

b
They are particular solutions for the region of t where ¢t > 0 . They
arise when, at t = -» , the two-level systew is in either pure stationary

state ¢ _(r) or in pure stationary state wb(r) before the cosut

perturbation is adiabatically turned on during the time interval:

*
See Epstein (1969) and Langnoff (1972).
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o <t < 0,

Convergeuce of Techniaues T1, T2, T3 aund T4

All four techniques which we are about to describe converge under the
conditions described by (VII-13). The reader whe is interested in finding
a solution for some regime of the parameters which is included in (VII-13),
need only study Technique I since the other techniques include nothing

fundamentally different.

Technique Tl: Non-Degenerate Rayleigh-Schrédinger

Perturbation Theory to Solve (V-3)

In this technique, we will solve the time-independent Schrodinger~-type
equation, equation (V-3), by making a non-degenerate Rayleigh-Schr&dinger
expansion in powers of the field strength. Once we have solved the static
problem, we may recover the solutions to the dynamic problem of equations
(II-4) and (II-5) by utilizing equations (V-7) and (V-8).

HF is broken up according to (VII-1) and (VII-2) and the expansions

(VII-5) and (VII-6) are assumed.

We find that we can obtain one of the Floquet Normal Modes if we chodse

‘]J(O)>

the zeroth order wavefunction, s to be
O, _
7> = A, 4> (VIII-1)
o
(our zeroth order energy, u( ) » is therefore j ). We can easily compute

the higher-order energies and wavefunctions by the well-known Rayleigh-

Schriodinger prescription. By using relationships (V-7) and (V-8) we can
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use the solution obtained for the static Floquet Hamiltonian to

generate a time-dependent Floquet Normal Mode. The final time-

dependent result is invariant to the choice of i in (VIII—l).
The other time-dependent Floquet Normal Mode is obtained by

letting
(> = s3> (VIII-2)

and, therefore

N
We now detall the manipulations involwved in using non-degenerate

Rayleigh-Schrodinger perturbation theory to find the solution of

HFIu> = uju>
which corresponds to choosing

(0)

U = 3 and |u(0)> =

|, 5> (VIII-3)
where j 1s any integer or zero. Since HF, |u> and y are all
expanded in powers of A according to (VII-1), (VII-5), and (VII-6)
respectively, we match terms in like powers of XA to obtain a set

of solvable equations for the u(n)'s and Iu(n)>'s .
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H§°)Ju(°)> = WO, @, (VIII-4)

(l)lu(1)> - U(O)IU(2)> + u(l)lu(1)> + u(2)|u(o)> X

Héo)lu(2)> + HF

etc, (VIII-6)
. (0) (0)
The choice of u and Iu > glven by (VIII-3) certainly
satisfles equation (VIII-4) and, with this choice, the equation for

]u(1)> becomes:

I R AT R MO R O P N s s 05

We now solve (VIII-7) by assuming that [u(1)> may be expanded in

the |A,k>;|B,k> basis:

SN I le i céiiln,k> (VIII-8)

1
where the Cé ;'s are expansion coefficients. If we substitute
2

(VIII-8) into (VIII-7) and left multiply the result by <A,j| , wa

find u(l) :
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By then left multiplying the result by each and every <£,k| we

find that all expansion coefficlents vanish except C§1;+1 and
2
{13
C(l? . C‘l’ is not determined by {(VIII-7). It is however
B,j-1 A,J
determined by choosing intermediate normalization of |u>
0
MOIROR
g . (1) _ (1)
and, with this choice of normalization, CA ' 0. |u >
L]
therefore is:
(1) [B,j~1>  _ _|B,j+1> }
W = el e Ty T -1 (VIII-9)

Iu(2)> is found by solving equation (VIII-6). We again assume
that |u(2)> may be expanded in the spectrum of Héo) and by using
the procedure we used to obtain ﬁ(l) and lu(l)> s we can find
u(z) and Iu(2)> . We may, of course, continue this algorithm to

and

L)

cbtain results of arbitrary accuracy. The quantities

2
Ip( )> are given in the following summary of results.
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y _ N ) (2) _ _20%(c - i8)
¥ A B T 1= (e - i8)2

Iu(1)> _a[[B:j + 1> - _lésj - 1> ]

l+ ¢ - i8 1l -¢+i8

l (2)-_, = E.z_[_léﬁ.] + 2> +_[é:j '2:']
! 2 1l+e-dis  1-c+16

(VIII-10)

i [B,j - 2> _ __2|B,3>
+ oB (1-~e+1i8)(2 - ¢ + i) 1l - (e - 15.6)2--l

+ [B,j + 2>
(L+e-1i8)(2 +¢ - 1i6) |

e

From Eq. (VIII-10), by utilizing the correspondence between the
eigenvalue-eigenvector problem and the time-dependent problem, we
can write a solution to for a(r) and b{r) which is correct
thréugh second order im A . This solution will be called ay(r)
and b;(t) where the subscript "1" is utilized in anticipafion of
finding another linearly independent solution. This-firét solution

(in which A has been set equal to unity) is given by:
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. _20%(s - id) .
H1 1 - (e - i6)2
~ipT o2 eZiT e—ZiT N
a1(v) = e L v R TLIMRAAE
-1
bi(r) = & 1% (1)
Rt KL ' (VIII-11)
by (D) = el T TR o o5 '
2 2iT 7]
a 2
_ .]- .
T AT - i@ e -1 1= (- 1002
. e—ZiT
i (1 - ¢+ 18)(2 - ¢ + i8)
0
Letting |u(0)> = ]B,j> and u< ) =3+ e~ 1id , we can obtain

the other Floquet Normal Mode which we will call {as(t),by(t)} .

It is correct through second order in A and it is given by:

202(e - 18)
1~ (e - i8)<

p = & - 16 - + ...

. i -iT it
- —ils T e _ e
82 (1) € T¥e-i5 T-e7id

=217 2iT
e

. |
2+e-16 " 2-cvie to

+ af(

(VIII-12)

bp(r) = e tM2T|1 4 aee”1T - Ty
2 —9us
+ %_(E 2it + eZiT)

2 e‘ZiT 2iT
+ 2= + —== )
2 1+8-1i8  1-¢+ i§

o

b
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Reproduced from
best available copy.

From (VIIT-~I1l) and VIII=-12}, we can 2w =ros Yy conficze the
convergence conditions we postulated in (VII-10). We can alse check
the algebra involved in deriving our results by using the relationship
between any twe linearly independent solutions which is given by
(III-21). Further, since the solutions are either Form I or Form II,
we may express the general solution which satisfies arbitrary initial

conditions in terms of (VIII-11) and (VIII-12):

a(t) Cia(T) + Cpaz(r)

b(1) Ciby(t) + Cobs(T)

whexe C; and Cp, are arbitrary constants.

Sen Gupta's Technique: Technique TC

The next approach to be considered (call it "Technique 12") was
used by Sen Gupta (1970). It involves directly solving the-
differential equations, (II-4) and (II-5), without first making a
Fourier Expansion.

The first step In the appreach is to assume that the solution is

of the Floquet form:

il

a(1) e " (1)
a
(VIII-13)

b = e Ty (1)



We do not make a Fourier Expansion of ¢a and ¢b but rather

substitute (VIII-13) into (II-4) and (II-5) to obtain equations for

the ¢'s .
¢a = 1u¢a - 21ac051¢b
(Vviiii3)
¢b = iu¢b -ile - 16)¢b - 21Bcosr¢b - 21ucosr¢a

We will consider o and B to be the perturbations in (VITI- 13}, We
may formally do this by introducing the ordering parameter X which
will be set equal to unity whenever final results are reported. With

*
the introduction of A , (VIII-14) becomes:

RS2k
It

iu¢a - ZiAac05T¢b

(VIII-15)
¢b = iuqbb - 1i(e - 16)¢b - 21ABcosr¢b - 21akcosr¢a

We next assume that ¢ , ¢ and the characteristic exponent, u
a’ b ?

may be expanded in a power series in A

NG Elnqbén)(r) k = a,b (VIii-18)
n=0

*
Note that the introduction of A in this manner is equivalent to

an expansion in the field stremgth, F .
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Substituting the expansions (VIII-16) into (VIII-15) and grouping
together terms in similar powers of X , we can obtain solvable
equations for u(n) and ¢£n) (k = a,b) . In solving these

(n) t

equations, the u s are determined by requiring that the ¢£n)'s

have the proper periodicity, i.e.

¢én)(T) = ¢£n)(T +21) 3 k=a,b; alln . (VIII-17)

For example, the zeroth order equations are:

HORNEMCIND
(VIII-18)

A R TR O e

(VIII-18) are uncoupled and therefore may be immediately solved

to give
s o @
a a
RONENORETMSRETIE
b %
where Kio) and (o) are constants of integratiom.

and Kéo) s0

that condition (VIII-17) is obeyed. If ¢ 1is non-integer, this may

We must now choose the constants u(o) R K;O)

be accomplished in two ways:
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) ( {
(01 - \.D) = 0 Ka\.o)

Choice T: =1m ; Kb arbitrary

-

) (0)

Choigce II: u(o) =m+e -~ 1§ Kio) =0 ; Kb arbitrary

-

where m is any (positive or negatilve) integer or zero. When ¢

is non-integer, choosing the constants of integration is a simple
matter since any term which involves an arbitrary constant times an
exp[+ier] factor can only be properly periodicrif the arbitrary
constant is set equal to zero. When ¢ =0 and e is integer,
slight complications arise which we can ignore, since, when e is
exactly or almeost equal to an integer, we recommend that entirely
different perturbatior. techniques be used (see Chapters XI and XII).
If we start with Cholce I and carry out the calculation to higher

orders, we find that the u(n)'

8 are determined in each and every
order by the requirement (VIII-17), Furthermore starting with
Choice I, we are led to exactly the same result as the result given
by (VIII-11l), i.e. we are led to one of the Floquet Normal Modes.
Starting with Choice II, we end up with the other Floquet Normal

Mode, i.e. exactly the expression in equation (VIII-12).

Manipulations Involved in TZ2.

To accomplish the task of explaining Technique T2, we only need
to follow the development arising from Choice I since the manipulations
arising from Choice II are similar. We will also find that the
results are exactly same nc matter what we choose m to be., If,

for simplicity, we let m =0 and let KiO)

= 1 we have the

Choice I-zeroth order solution:
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(VIII-19)

Using (VIII~19) in the perturbation equations proportional to X

we have

3D = W (VI1I-20)

&él)

= —i(eg -~ 16)¢§1) - 2iccost (VIII-21)

%
These first order equations may be easily solved to obtain:

¢§1) Kél) + iu(l) T
~it it
(n _ D _ - e - e
b o7 & eelrile A Falf oy - TR o o 1)
where Kil) and Kél) are constants of integration. ¢§1) is
periodie only if we choose u(l) = 0 . This manner of determinihg.

u(n),

the s 1s a hallmark of this technique, namelyi the u(n)'s

are chosen so that they cancel out terms linear in 1 which appear
. (n) 1 (n) '
in the ¢j 8 . To use an older phraseology, the ¢ s are chosen

to make the secular terms in the ¢§n),s vanish and thereby make the
n
NOR

i s have the proper periodicity.

o
The equation for ¢é ) i1s a standard equation--the solution of

which is given by Dwight (1961) on page 252.
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If ¢ is non-integer, is periodic if and only if

(1)
i3
Kél) = 0 and therefore the periodicity requirement determines the

constant of integration.

*
Choosing Kél) = 0 , we summarjze the first order results:

uél) =0 ; ¢§1) =0

(VIII-22)

-it it
e e

(1) _ - 1
1-¢eg+1i8 1+e¢e ~ 18

oY

ol

With the zeroth and first order results established, we write

the equations propertional to A?

$(2) = iu(z) ~ ZiocosT ¢(1)
a b
s (2) _ i L (2) . (1) (1)
¢b i(e 16)¢b 2iBcosT ¢b 2iocosT ¢a
These equations are easily solved to obtain expressions for ¢:2)
and ¢é2) which involve the constants of integration Kéz) and
(2)

%

We are free to choose K(l) to be anything we want. This

a

corresponds to choosing normalization.
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i 2it =211
(2) (2) (23 102 (21 - 1e”7) (27 + ie )
b K it o T e o) A+ i)
B 2iT ]
(z _ _(2) , , e
by T = K7 expl-ile-18)t) + o8 | T

=247
+ e
(l-e+i8) (Z~e+i6)

2
U [1-(e-18)7]
(VIII-23)
(2) . (2)
In Eq. (VIII-23), ¢a is made periodic by choosing u g0 that
it cancels out the terms linear in r . For ¢é2) to be periodic,

{2)

we must set Kb equal to zero. Therefore, we let

L2 _ 202 (e~18)

and T-(c-18)2

We can continue this procedure to obtain even higher order
(n) ' (n) '
corrections. We would find that all Kb s and all yu 5 would

be uniquely determined by the periodicity requirements on the

¢§n)'s . The Kin)'s are arbitrary and are chosen to fit whatever
normalization requirements we might impose. If we specify Kéo) =1

n ' R
and K; ) . 0 (n > 0) , the solution we obtain is exactly the Floquet
solution given by (VIII-11).

Similarly if we use this perturbation scheme starting off with
Choice II, we will get exactly the Floquet solution given by (VIII-12)

if we choose the normalization:
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K9 =1; k™ =0 @>0

The fact that this technique leads to solutions exactly
equivalent to the non-degenerate Rayleigh-Schrodinger resulfs,
means that this technique will give solutions which are quickly
convergent only under the conditions given in (VII-13). This
observation should make us stop and think before we apply techniques
such as "Technique II" in solving systems such as (VIII-15). With
this technique, in zeroth order we are neglecting only terms
proportional to A (i.e. proportional to the field strength). We
are retaining the terms $a R éb and -i(e - 16)¢b . We might,
at first sight, expect the perturbation solutions obtained to
converge for large e and large & . They will not converge, of
course, in the case of arbitrary large € , because by (VII-13),
if € ®* n (n any integer) and ¢ is very small, the solutions

would not be quickly convergent.
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The Technique T1 formulation of the original time-dependent problem
as a statle problem therefore has an advantage over the Technique T2
formulation. Because of our familiarity with the static problem and
its convergence properties, Technique Tlgives us a set of convergence
requirements which are not as easily seen in techniques such as T2

which do not directly involve the Fourier Expansion.

Technique T3: Field Strength Perturbations

Of the Quotient Equations

The approach which we are calling "Technique T3" starts off by
considering the differential equations for the quotients b(t)/al1)
and a(7)/b(T) . 1In it, no Fourier Expansions are made. The resulting
equations, however, are solved by a perturbation expansion in the field
strength, F .

Block and Siegert (1940) used these quotient equations in considering
the effect of the field strength on the resonance frequency. Their
method of solution, however, is very different from the technique we
are about to describe. The Langhoff-Epstein-Karplus (1972) time-
dependent steady state perturbation formalism, when applied to the two-
level system with Yo=Yy = 0 , essentially reduces to solving the
quotient equations by making a perturbation expansion in the field
strength, F .

In Technique T3, we start off by letting

bl(’l')/al(‘f) = (f’l(’l.‘) (VIII'*ZQ)
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For the case of {a;(1),bj(1)} being one of the Floguet Normal Mode

particular solutions,

@1(1’ + 211’) = ¢1(T) .

Using (II-4) and (II-5), we may find the differential equaticon which

¢; obeys. It is:

51 = -i{e - 1§ + 2BcosT)®; ~ 2iccost + 2iacosr(®1)2 (VIII-25)
Note that the equation for ¢; is a first order non-linear equatiom.
Once ¢; is known, however, we can recover aj(t1) and b;(tr) , since
by using the definition of ¢; 1n equation (II-4), we have:

a; = -2iacost®ja;

therefore

where Ka is a constant of integration. If we define 6;(1) by,

81 = -2iscostd;(T) (VIII-26)
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then we may write the solution to (II-4) and (II-5) as

ai{t) = exp(6;(1)]
(VIII-27)
bi(t) = &;(r)exp[6;(T)]

Solving equations (VIII-25) and (VIII-26) is equivalent to solving
(I1-4) and (II-5).

In the same manner, we can look at the quotient
az(t)/ba(1) = @5(1) {(VIII-28)
The equation for ¢,(7) 1s first order and non-linear:
$, = =2iacost + i(e - 18 + 2BcosT)®, + 2{iacost(9,)2  (VIII-29)

Once we know ¢&,(1) , we can recover ap(1) and by(t) by substituting
*
ap{(t) = & (1)by (1) into (II-5). If we define 65(T) by

8 = -1(e - 18 + 2Bcost) - 2iamcostd, (t) (VIII-30)

then we may write the solution to (II-4) and (II-5) as

*
Note that if ¢,(v) is known, 6,(t) may be found by simple

quadrature.
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ap(tr) = @y(m)exple,y(1)]
(VIII-31)

bz(T) = exp[92 (t)1]

Equations (VIII-29) and (VIII-30) are therefore alsc equivalent to
equations (TI-4) and (II-5).

What we now want to do, is to solve the non-linear equations,
(VIII~-25) and (VIII-30), by an expansion in the field strength to
obtain the Floquet Normal Modes. We will find that solution of (VIII-25)
will yield one Floquet Normal Mode and that solution of (VIII-30) will
yield the other one.

Let us first focus on (VIII-23), If we assume that
-1 -
a1 = 7 (0 b = T (o)

where u is a constant and ¢k(r) = ¢k(r + 27) (k = a,b) , then it

follows that
e1{t) = &;(r + 2m) (VIII-32)

Therefore, to obtain a Floquet Normal Mode particular solution, we
must impose condition (VIII-32) on &

We can obtain a perturbation solution for $1 1n powers of the
field strength. We do this by introducing the ordering parameter )
and by replacing a and B wherever they appear in (VIII-25) by

Ao and AR respectively:
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®; = -i(e-i6)¢; - 2iMBcostd; - 21idacost + 2ilacost(®)* (VIII~33)
We assume the following expansion for 9,

0,0y = T A" o™ () (VIII-34)
n=0

Substituting this expansion into Eq. (VIII-33), we match like powers
of the ordering parameter X to obtain a set of solvable perturbation

equations the first three of which are:

39 = _ie-16)0{® (VITI-35)

SR —i(e-ia)¢fl) - 21gcosta{®) + 2iac08T[¢§°)]2 - 2iacost
(VIII-36)
652) = -1(g—i6)®§2) - ZiBCOSTQfI) + 4iacosr¢§1) @50)
(VIII-37)

Since we have defined ¢&; by

¢1(1) = bi(v)/a (1) ,

if we are seeking a Floquet particular solution we must require

¢ (rt2m) = o3(1)
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In terms of the A-expansion of ¢; , this requirement becomes:
(t+2w) = ¢§ )(T) all n . (VIII-38)

The solution to (VIII-35) is

o{ = k(9 axpl-i(e-18)7]

*
If ¢ 1s non-integer, the only way in which (VIII-38) can be

fulfilled is by requiring KEO) = 0 , Stipulating that & be

non-integer we therefore have:

317 = 0 (VIII-39)

We now solve equation (VIII-36) which becomes with ng) = ()

(1)

{1) = -1(e~-18)®; " - 2ioccosT

(1

Letting Kj be the constant of integration, we write the

solution for @fl)

* (o)
If §=0 and € 1s integer, K,

is not determined by the
zero-order periodicity requirement, It will be determined in some
higher order of the perturbation. We can ignore this complication,

since, when e 1is integer we recommend that entirely different

techniques of solution be used.
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e-iT eir

1-e+id ~ 1+e-16

{1) e—i(E-iﬁ)T

0‘4[ ]+’K1

1
Since e is non-integer, the constant of integration, K§ ) s
must be set equal to zerc 1if @fl) is to obey (VIII-38). We use
@51) in (VIII-37) and obtain the equation for @{2) . In solving

this equation, we again find that proper periodicity requires that

the constant of integration appearing in it be set equal to zero.

sz) is found to be:
(2) 21" 2 e
0177 = oBl{TIEy (Zre18) T 1-(e-16) T (I=etid) (Z-e+id)]

(VIII-39) .

This development may easily be carried on to obtain the higher
order terms in &; . We may also use exactly the same techniques to
find a periodic solution to (VIII-29).

Since we have an approximation to ¢; , we now obtain an
approximation to 6; by using (VIII-26). 1In doing this we must
resolve the question of normalization. In order to easily compare
our present results to the Technique Tl solutions we impose the

following normalization condition:

A2q2

exp[6;(t=0)] = I+W

(VIII-40)
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To apply this condition, we will first assume that 8 may be

expanded in a power series in A :
1 2
oy = 68" 4 ae{M +226(0 4 (VITI-41)

If this expansion is substituted inte (VIII-40) and if the

exponential is expanded according to:
1 = &1 142 42206 4 Ye{Vy2y 4 .

we now match like powers of X and set T = 0 to obtain:

a2

(2) -
1-(e-1i6)2

iV =0; oD@ =0; o

(VIII-42)

In solving (VIII-26), we first replace o by (Aa)
Inserting the A-expansions of 8; and ®; , we obtain the

equations proportional to A% and 2

0
Both Bf ) and efl) are therefore constants, and by the
normalization in (VIII-42) both of these constants must be zero.

From the equation proportional to A% we have:
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. 1
e§2) = —ZiGCOSTQE )
Its sclution is simply:
2 2 -2irt 2it
e(2) _ K(2) _ 2iet(e~-id) T + g_[ e + = 1
1 8 1-(e-18)2 2 ' 1-e+i§ | 1te-i6

Kéz) may be found from the normalization conditions given by (VIII-42):

()

8 =0

(2}

Since we know &7 s we could continue this process to find

a§3)

Since nothing illustrative is gained by doing so, we will
just report the results giving 6, correct through A2z,

All of these results for ¢&;(t) and 6;(1) are now used in
Eq. (VIII-27) to obtain expressions for {a;(7);b)(t) . We get a

Floquet particular sclution which is correct through second order in

A , and, in which, A has been set equal to unity:

a;{r) = expl[6;(1)] ; bi(t) = &)(1) exp[f;(7)]
A - —2i02(e-i8) T + EE{ eZiT + e_ziT] +
1 1-(e-i8)2 2 '14e-18 T 1-e+is e
. =it it 21T
_ e __e e _ 2
91(0) = eliTgas - Teors) t BTy ety T To(et)?
=21+
e

* T s) (a=c1ey ] oo

(VITII-43)
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The normalization given by (VIII-40) has been chosen to facilitate
the comparison of the results in (VIII-43) with the previous results
glven by (VIII-11).

Notice that secular terms (terms linear in T ) appear only in
81 . If we write (VIII-43) in terms of the independent variable
t = t/w and let € = AW/w , o = FVab/w , etec., we find that terms
in inverse powers of w appear only in 6; . This is in accord
with what Epstein (1969) and Langhoff (1972) predict for solutions
which have been written as (VIII—Z%) and (VIII-31).

Note the curious fact that the field stength perturbation
expansion of (VIII-25) yields only one of the Floquet Normal Modes
in spite of the fact that all solutions b(t)/a(r) obey (VIII-25).
To obtain the other Floquet Mode, we must perturbatively solve
(VIII-29) using a field strength expansion.

Proceeding in the same manner as we did in deriving the first
Floquet Mode (equation (VIII-43)), we can derive the other Floquet
Normal Mode. It is given by the following expression which is

correct through A? and, in which, A has been set equal to unity.



8-26

az = Op(t)exp[8,(1)] 5 by = expl8y(r)]
—i 20 - i
62(1) = -(le + &)t + ple " - &™) + 82 + ilf EE - igg;
a2 e—ZiT eZiT
. + * & a
et tas er )
e—iT eiT (VIIT-44)
200 = eliy T T T v
) —24t 7
+ af 2 £ + .

1-(ec-18)2 = (2 + e,- 18)(1 + & - 18)

e211:
T2 -e+1i8)(1 - £ + 18)

-~

We have normalized (VIII-44) according to

- 2 0"2
exp[06,(0)] = 1+ B~ + 1=l - 182 + ...

Mere inspection of (VIII-43) and (VIII-44) would lead us to
postulate that they will only converge under the same requirements we
imposed for Technique I solutions to converge. This postulate is
further confirmed when we realize that (VIII-11)can be obtained from
(VIII-43) and (VIII-3) can be obtained from (VIII-44). For example
the equivalence of (VIII~43) to the solution given by (VIII-1D can
be established by taking (VIII-43) and expanding those terms in the
exponent of a; and b; not linear in t . In detail, we can do

this by separating 6; into
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e1(t) = 81(1) + 8y(1)
8; contains only the terms linear in t and 51 ; contains all

other terms. Now expand exp(9;) according to (VIII-45)
51 4 8 PROL = ,
exp[81] = exp{®1+ 61] = [1+ 8+ -5—+ ...]lexp[6:] (VIII-45)

If we use (VIII-45) in (VIII-43), replace o by o and B by
A, we find after regrouping like powers of X that we have
recovered the solution given in (VIII-11) after we have discarded
terms going as A" where n > 3 and have set ) equal to unity.
We can generate (VIII-12)from {VIII-44) in exactly the same

manner.

The Technique T3 Solutions for n, and Ny When

We wish to write down the Technique IIT solutioms for s and
n, when Yo = Yy < § = 0. We will need these in subsequent sections
of the report when we discuss the steady-state perturbation theory.
Recall that {na(t),nb(t)} is related to {a(1),b(t)} by
(II-1) and (II-2) and the reduced parameters are related to the non-
reduced parameters by (II-3). The Floquet Normal Modes Solutions given

by (VITI-43) and (VIII-44) for the case of Y, = v, = 0 glve the

b
following solutions for na(t) and nb(t)»
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The Floquet Normal Mode which has been obtained from (VIII-43)

may be writtem as:

- 1 v = ' 1
na}_ exP[el(t)] ] nbl @1(t)EXP[51(t)]
BV 2i (Fvab) 2AWE
' = -1 — i -— '
Gl(t) = 1Wat 21—7:—31nwt w2 = (aW)2
(Fvab)2 "eziwt 21wt
i VIII-46
+ 2u ‘w + AW + w - AW ( )
Leuiwt“ eimt
Y = -—
Ql(t) FVab w - AW w4+ AW
eZiwt 2 e-Zimt
2 -
‘ +F VabAv (w + AW) (2w + AW) ws -~ (AW)Z + {w - AW (2w - AW)
where AW = Wb ~- Wa and AV = Vbb - Vaa .
The other Floquet Normal Mode is obtained from (VI1I-44) and it is:
= ' 1 . - 1
N1y ¢2(t)exp[82(t)] : nbz exP[Bz(t)]
2iFV 21 (Fvab) 2 WL
B' = _—- - — 2 2
5 (t) Wt " sinut + (F2AV)? + —— w2
N .
X (FV_,) [; 21wt . J2imt
20 |w+ AW w ~ AW (VITI-47)
e—iwt eimt
t = -
2, (t) Wblo v 20 "5 < oW

-2iupt 21wt
+ F2y AV[ : - = - &
ab” (w? + (AT T (20 + AW (w + AW (2w - AW) (w = AW)
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Inspection of {(VIIi-44) and (VIII-47) as well as consideration of

the convergence criteria given by (VII-13), leads us to postulate that

the expressions (VIII~4€) and (VIII-47) for the Floquet Normal Modes

will be quickly convergent under the following conditioms:

Fv FV FV.
ab aa
. ” and

o are all much less than unity

and these quantities are all much less than

AW (VIII-48)

. | where K . is the integer which makes
w min min

CLLA K ., | as small as possible.
w min

The one point which we wish to stress (and we will come back to

this point when we discuss steady-state perturbation theory) is that

we do not expect expressions (VIII-46) and (VIII~47) to be convergent

expressions whenever AW/w is almost equal or exactly equal to some

non-zero integer. In fact, if AW/w = n (n some non-zero integer) we

would expect that the n-th order correction to ®{ and @5 would to

be infinitely large. This is so because we expect to have a

denominator of the form

(aw - AW)

in the n-th order of perturbation.



8-30

Technique T4: Steady-State Perturbation Theory

The last remaining field-strength expansion technique which we
wish to discuss is the ''Steady-State Time-Dependent Perturbation
Theory." This technique is very fully discussed in Epstein's (1969)
report and in the 1972 review article written by Langhoff, Epstein
and Karplus.

The steady-state perturbation theory is meant to apply to the
original equations for na(t) and nb(t) (equations (I-4) and (I-5))
under the conditions that Y, =Y T 0 . The theory gives us the

appropriate particular solution for

¥(r,t) = n (039, () + n (£)y, (r)

in the regime of time, t > 0 , when at t = —= the two-level system
is in the pure quantum state wk(E) (k = a or b) and the cosuwut
perturbation is adiabatically turned on. These "steady-state'
solutions are the particular solutions used in the computation of the
optical properties of matter such as the index of refraction, etec.

We use our simple two-level model problem to demonstrate two
points.

The first point we show is that these steady-state solutions are
just the Floquet Normal Mode particular solutions. If at t = -= ,
the two-level system is in quantum state ¢a(g) and if the cosut
perturbation is adiabatically turned on, in the regime of t > 0 , the

system will be in one of the Floquet Normal Modes. The system will



8-31

be in the other Floget Normal Mode, if before the coswt perturbation
is adiabatically turned on, the system is in pure stationary state
wb(E) . The equivalence between the steady-state solutilons énd the
Floquet Normal Modes has been discussed in the recent literature.
Young, Deal and Kestner (1969) call the Floquet particular solutioms
"quasi-periodic states" and assert that these quasi-periodic solutions
are the steady-state solutions. Sambe (1973) and Okuniewicz (1972)
discuss how, after one has made the correspondence between the Floquet
solutions and the steady-state solutions, one may treat the problem
of a quantum system in a pericdic perturbation by borrowing some of
the techniques used in time-independent quantum theory. In their
treatment of the high-frequency Stark Effect, Hicks, Hess and Cooper
(1972) seek the steady-state solutions for a periodically perturbed
system by seeking the Floquet Modes of the system. Young and Deal
(1970) prove that an adiabatically turned-on periodic perturbations
will put a quantum system in a Floquet Normal Mode.

The other point we show is that the Langhoff-Epstein-Karplus
formalism yields expressions for the Floquet Normal Modes which
(aside from phase and normalization) are exactly equivalent to the
expressions for the Floquet Modes which we would obtain if we applied
Technique T3 to the equations for na(t) and nb(t) and let

Yo = Y T 0, i.e. expressions (VIII-46) and (VIII-47).

a
We discuss and demonstrate the two points we have just mode
after we restate the formalism described by Langhoff, Epstein, and

Karplus (1972).



8-32

Restatement of the Langhoff-Epstein-Karplus Formalism

Consider the general quantum system having a time-dependent

Hamiltonian of the form:
H(r,t) = HY%(x) + 2FV(r) T(t) (VIII-49)

where Ho(r) and V(E) are spatial operators, F is a parameter
and T(t) is a time-dependent function which we may leave
unspecified for the time being.

Let Ho(g) have orthonormal eigenfunctions, wj(g) . Wj is
the eigenvalue assoclated with the eigenfuncticn ¢j(g) :

BO(DY () = W (D) (VI1I-50)

If we set # =1 , the description of the system's quantum

marhanical motion mav

may be obtained by solving the Schrodinger

[o4
& midw CLioUlalln

differential equation:
t¥(x,t) = H(r,t)v(r,t) (VIII-51)

after we have specified w(r,ty) : the state of the system at the
initial time tg .
We assume throughout that both HY and V are hermitian

operators. This stipulation means that when applying the
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Langhoff-Fpstein-Karplus formalism to the Hamiltonian defined by
Egq. (I-1), we must let Y, = Yy = 0.

We are concerned with solutions to the time-dependent Schrodinger
Equation which obey the following initial condition:

=iWpty

¥(r,tg) = Yp(ple (VIII-52)

where Yg(r) 1s a non-degemerate eigenfunction of Eq. (VILI-50),

Wo dis its non-degenerate eigenvalue and ty 1is the initial time of
interest. The key idea in the Langhoff-Epstein-Karplus formalism isg
that the sclutions which

(a) obey the initial conﬁitions given by Eq. (VIII-52)

(b) result from an adiabatically turned-on periodic perturbation
may be written:

¥(r,r) = nglt)e(r,r)e Vot

(VIII~53)

The relationship between Eq. (VIII-53) and the usual Dirac variation

of comstants solution is easy to discuss. Let the Dirac expansion of
the wavefunction be written as

~iWgt

¥(r,t) = } ny(£)y, (p)e (VIII-54)

3

where j ranges over all eigenstates of Ho(g) . Comparison of

Eqs. (VIII-53) and (VIII-54) allows us to identify ng in (VIII-53)
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as the expansicn coefficient of ¢g(r} in (VIII-54). The time- and

space-dependent function @(r,t) 1s given by:

n,(t)
= Iy rl N —
¢(x,t) Py (x) +’j$0 ﬁﬁ??? by () (VIII-55)

Thus, the factorization of ¥(r,t) given by Egq. (VIII-53) is
equivalent to factoring cut the expansior coefficient of Yg(x) in
the Dirac expansion. The purpose of the factorization is to include
any over-all normalization and time-dependent phase factors in the
function nmg(t). We will have more to say of this later.

Substituting Eq. (VIII-53) into the time-dependent Schrodinger
equation, we obtain a non-linear, first order differential equation
for ¢(r,t) . Knowledge of ¢{r,t) completely determines ng(t)
and therefore solution of the equation for ¢(r,t) is equivalent
to the solution of the original Schradinger Equation for W(E,t) .
To demonstrate all of this, substitute expression (VIII-53) into
Eq. (VIII-51) to obtain:

o (t)

(i(f,t) + [W - iWg + i'H(E,t)](P(E,t) = 0 (VITI-56)

From Eq., (VIII-55) we have

<pp(rr]e(z,t)> = 15 <ypg(r)felr,t)> = 0 (VIII-57)
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where the bra-ket notation is vsed te dencte an dintegration over

spatial coordinates:
‘ #
o e, td> = | yo(x)e(r,t)dr

%
Therefore, left multiplicatricn of Eq. (VIII-56) by Yp(r) and

subsequent spatial iIntegration gives:

ﬁo(t)
m— =24iFI(t) (VIII-58)
where
I(e) = TE)g(r) |[V(z)e(r,t)>

Noting that the initial wondition on np(r) is
nelty) = 1

we write the appropriate particular solution to Eq. (VIII-58) as:

t
nglt) = exp[-2iF J I{t*)ydt'] (VIII-59)
to
Thus, ny(t) is completely determined by &(r,t) and we rewrite

the expression for vy(r,t) as:
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+

¥(r,t) = &(r,t)exp[-iWyt - 2iF J I(e")dt'} (VIII-60)
to
To find the differeatial equation for ¢(E,t) » substitute Eq.

(VIII-60) into Eq. (VIII-51) to obtain:
18(r,t) = [H(r,t) - Wole(r,t) - 2FI(e)e(r,t) (VIII-61)

Solution of Eq. (VIII-61l) is equivalent to solution of the original
Schrodinger Equation: Egq. (VIII-51). The non-linear structure of
Eq. (VIII-61) is made more apparent by rewriting the expansion for

@(E,t) (Eq. (VIII-55))} a=

S(r,t) = Pp(r) + } b (t)y, (x) (VITI-62).
” © jé0 Y I~
where
l(t)
| e
bj(t) np(t) °

Substituting (VIII-62) into (VIII-61) we find the following set of

first order non-linear equations for the bk's (k # Q)

b, = (W, - Wb+ 2FT(t) [V, - Vb ]
(VIII-63)
+ 2FT(tY Y B,V . -V, b ]
jﬁa 1 k3 0] 'k
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where
Vey F b Ve )

Purpose of Langhoff-Kazrplus-Epstein Formulation

The purpose of the formularion we have just described is two~-fold.
Firstly, it gives us a methed oif computing the part of ¥(x,t) which
alone is needed in computing properties: ¢(§,t) . To see this,
assume that we wish to find the expectation value of the quantum
mechanical coperator ?(F,t) where ?(Z,t} contains no time

& -
derivatives. The expectation value of P(E,: is given by

W, r) P(r,t) [¥(r,t)>
E () 1Y (e, 1)

P(t) (VITI-64)

If ¥(r,t) 4is given by (VIII-53), we have:

+ —
7 (r,t)P(r,t)e(r,t)dr

P(r) = Fe¥ (e, 000 (z, D) dx (VIII-65)

and therefore only the function ¢(r,t) is needed to compute such
properties.
The second purpose of the formulation is concerned with the

particular solutions of the Schrodinger Equation which corresponds

*
This restriction may be released by hermitizing the time-derivative
operator. See footnote 33 in the Langhoff, Epstein, and Karplus

review article.
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to the.steady-state response to an adiabatically turned-on periodic
perturbation. When we use the present formulation to obtain the
steady-state sclutions as perturbation series in the parameter ¥ ,

we expect the following convenient form:

(a) ¢(§=t) = ¢(§,t + %fﬁ and @(E,t) has no terms in it
propertional to (l/w)
(b) ng(t) = explé{t)] where all secular terms and all terms

propeortional to (i;w) are included in 8(t) .

A point we wish to emphasize is that, in general, only the
steady-state solutions for a periodic perturbation will have the
above convenient form. We demonstrate this by using the two-state
system in a periodic perturbation as an example.

*
Consider the solution to (I-2) which obeys:
¥(r,0) = ¢ (0 (VIII-66)

By Floquet's theorem the solution will be:

‘iult

v(r,t) = (e 1y () + ce 2ty () (x)

(VITI-67)
—iplt -iUZt

+ (Cie (t) + Cpe Oy (EIIY, (2D

%1

*
Recall that we have stipulated Yo, = Yy ° g .
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2%
where u, and U3 are real constants, ¢ij(t + 7;) = ¢_,(t) and
4L

13
Cy and Cz are constants which will in general be non-vanishing if
the initial conditiom in Eq. (VIII-66) is te be obeyed.

We can always factor Eq. (VIII-67) according to (VIII-53). The
functien ¢(r,t) in this factorization will only be pericedic, however,
when either C; or €, is ser equal tc zers, i.e. when the initial
conditions are such that the system starts off in a Floquet Modea*

So then, in terms of the vocabulary used in this report, the
underlying ideas in the Langhoff-Epstein-Karplus treatment are:

(a) Turning a periodic perturbation on adiabatically brings the

system into initial conditicns at ¢t = 0 which give rise
to a Floquet Normal Mode.

(b) The steady~state solutioms are just the Floquet Normal

Modes of a quantum system.
We now demonstrate these underlying ideas by using the two-state

quantum system as an example.

Example: Two-State Quantum System

Consider the Hamiltonian defined by Eq. (VIII-49). Let Hc(f)

have two orthonormal quantum states:

BO@v, () = Wids () i=a,b .,

This statement is true as long as U; does net accidentally equal

Kz .
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The operator V(r) has real matrix elements defined by
@V > = v
T(t) 1is defined by
T(t) = &°% coswt (VIII-68)

where s. is a real positive parameter,. We consider tp = == and
look for the state of the system at. t = 0 .. We then let the
parémeter § 80 to zero. The multiplicative factor, exp(st) ,
plays the role of a switching function which, in the limit 6f s
going to zero, turns the harmonic perturbaticn on adiabatically,

To clarify the role of the switching function, consider the case
of large s . Here, T(t) is not large until t is very close to
zero. The smalier the value of s , however, the more slowly the
perturbation is turned on. In the.limit of s going to zero, the
coswt perturbation will be turned on adiabatically* (with infinite

slowness).

There i1s a problem with this form of the switching function. Namely:
. d .,
lim [E—-lft)] # 0.
_ t .
s> 0 g
We overlook this difficulty, however, since it does give us the desired
particular solution for @(E,t) (t > 0) which contains only the

frequencies w and nu n integer),
. 3
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Using Eq. (VIII-68) in Eq. (VITI-61), we solve the resulting

equation by a perturbation expansion in the field strength:

HE~13

B(r,t) = o™ (0

n=0

and require o(r,tg) = wa(g) where rg = -= . In terms of the

series expansicn of @(g,t) , we require:
®(n)(§9t01 = Y8 3 tg=-= (VITI-69)
For example, the zeroth crder equation
13,0 = 1w Pe,0 - e, w70
is already satisfied by cur choice:
6@ (z,e) = v (@ . (VILI-71)

The equation for ¢(1)(g,t) is:

(VITII-72)

sk
ZVaae cnsmtwa(g)
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By assuming the Dirac expansion:
s,y = 2, + 28 04 @)

we find the following equations for the time-dependent coefficients:

(1)

A(l) = 0 ; iﬁ(l) = AWA + 2V Stcoswt (VIII-73)
a b b a

be

where AW = Wb - Wa . We easily solve these equations and we determine

the constants of integration by using Eq. (VIII-69). Doing so, we

obtain:

iwt =iwt
St[ e =}

(1 .
Atw-1s AW-w-1is

9 = -V

ab © T (2) (VIII-74)

We continue in an exactly similar fashion to find:

B 2iwt T
{(2) _ 2st 1 e 1
¢ = AW, e ey higeats T miezts) [

1 e-Ziwt 1

* GWw-1s) LoW-2u-21s T BW-21

-l

(VITII-75)

where' AV = vbb - Vaa . We find even higher order correction in an

exactly similar fashion.
Since W(E,t) is completely specified by use of Eq. (VIII-60),

we need now to merely evaluate the integral:
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t t
~21F I de' " coswt'<¢a(§)lV(§)]¢(°>(§.t) + F@(l)({.t) o

-_ O

- pED 4§22 -

We find that

iwt =-iwt
e

{1) - st.e
£ ivaa € [s+im s-1w

]

2 28t
i(Vab) e
2

eZiwt 1

I gt+iw + E] +

1 [e—Ziwt 1
AW=-w—-1s" s-iw

(2)
E + g]]

[ l
AWHw-1s

(VIII-76)
Accumulating results we have

¥(r,t) = [¢a + F¢(1) + F2¢<2) + ...]exp[-iWat + FE(I) + p2e(2) 4 .

(VIII-77)

1) (2)

where ¢( and ¢ are respectively given by Egqs. (VIII~74) and
(1) (2}
(VIII-75). E and E are given by (VIII-76). We are now

interested in using Eq. (VIII-77) to find

lim W(E,O)
g+ 0
This will give us the initial conditions appropriate to the "steady-

state" solution. Taking the limit of each and every term is trivial

except for the tern E(Z)(O)
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2
L0 1 1,1 1. 1.1
g

. =1 + 11
2 AWtw-is s+iw s AW-w—1is's—1iw @ s'd

E(Z)(o)

(VITI-78)

The bothersome terms in E(Z)(O) are terms proportional to (1/s)
They are handled, however, by looking at the following

refactorization of E(z)(O)

~2(V )2 [ (a2 + w?]

(2) -
SlimO[E (0] [(aW)2 = w2]%
(VIII-79)
1V, )2 AW AW-w
+ 5 lim [s[(AW'Hu)Z + s2] + s (AW-w)< + 52]]

s +0

In the refactorization, there is still a term going as (a)‘1 .

Note, however, that although this term is indeterminate as s Boes

to zero, it is an indeterminate pure imaginary numbér. This term
appears as multiplying Y¥(r,0) by .exp(igj wﬁere £ is some
indeterminate real number. This term can be thought of as an
undetermined time-independent phase factor and it can therefore be

ignored. We will then take

2V, )2 (a2 + w?]

(2) _
Ha £ = (a2 = w2]2

s+ 0
and thereby ignore this phase factor in computing the final result.
With the limits taken, we find the following initial condition

appropriate to the steady-state wavefunction:
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¥(r,0) = ey +§ by, e}
where
200 V21w 2
oL _2F (vab? [ AW +m]+F3
1 ['sz - (1)2]
(VIII-80)
2FV . AW
= . ab 2 2 1 1
1T T T@EnT - o T P It e (aezey T Caee) (hiezay )
+ F3 ...

But note that aside from a normalization factor, Eq. (VIII-80) give
the same initial conditions which are obeyed by the Floquet Normal
Mode solution given by Eq. (VIII-46).

We, :therefore, conclude that if the two-level system is in
quantum state wa(g) before the harmonic perturbation is
adiabatically turned-on, at t = 0 the system will be in the Floquet

Normal Mode sclution which corresponds to

lim na(O) = 1 ; 1lim nb(O) = {
F-+0 F-+20
where n, and n, are defined by Eq. (I-3).
Carrying out an exactly similar analysis, we find that if the
two~level system is in quantum state wb(g) at t = -» , an

adlabatic turn-on of the harmonic perturbation ylelds the other



8-486
Flogquet Normal Mode solution at t > 0 : namely, the Floquet
solution corresponding to:

1im na(O) = 0 ; Iim n (0) = 1

F+0 F-+0 b

We have therefore given a simple example which demonstrate the
assertion that the steady-state solutions of a general quantum
system may be defined in the following simple manner:

If a quantum system is in the non-degenerate quantum state

y,{r) , an adiabatic turn-on of a coswt perturbation puts the
]

system in the Floquet state:

vo(r,t) = o(r,ee

where u 1is a constant, 5(r,t +-%§9 = $(r,t) and, if Ej is the

eigenvalue associated with wj(g) >

lim ¥ (r,0) = ¢ (e 3°
F~+0 J

The Convergence of the Steady-State Solutions

Expressed as a Power Series in F

We have already discussed the conditions we must impose if
(VIII-46) and (VIII-47) are to converge. These conditions are
detailed by (VIII-48) and they are, therefore, conditions which we

must impose on the steady-state results if they are to quickly
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1

converge., There is a problem, however. The steady-state scluticns
are successfully used in the theoretical computation of optical
properties in the entire region of 0 < w < AW and because of criteria
(VIII-48) we would not expect this to be so. TFor instance we would
expect the steady-state solutions to be poor approximations when

Case (a). w 1is very, very small.

(Case(b). AW/w approximately (or exactly) equals some positive

integer n .

Case (a).
When w is very, very small, no matter how small the field

strength, F , is, we would expect PV, /w (1,1 = a,b) to be of

3

order unity or larger in some region of very small w . In this

instance, the steady~state solutions do not quickly comverge.

Case (b).

If AW/w » n , a denominator in the n-th order of perturbation
would almost equal zero. This would clearly not give rise to a
quickly converging approximation.

How can we reconcile the fact that the steady-state perturbation
technique gives results in agreement with experiment when we claim
that it should not in Cases (a) and (b)?

In Case (a), we can resolve the apparent contradiction by
remembering that we are talking about using (VIII-27) and (VIII-28)

to compute average values of properties, P . Therefore, we are

looking at expressions of the form
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1Yz, OF (¥ (x, 0)dr
V¥, 0)¥(r,bB)dr

P(e) (VIII-81)

Where P(t) 4s the time-dependent expectation value of the spatial
quantum mechanical operator f(g) . Consider the particular

solution given by (VIII-46). For thls case

Y,t) = v (el + y (oefe’] (VITI-82)

Using (VIII-82) in (VIII-81) we obtain

o o ' o t * t
[Paa + 2Re{Pab¢l] + Pbb(¢1) (@1)]
I+ (@D*(])

P(t) = (VIII-83)

where

Py = sz(g)§(§)¢j(g)d§
Since P(t) is an observable, it is pure real and furthermore, it
does not involve 6] . Since only 6; contains terms in inverse
powers of w , P(t) contains no terms in (w)~1 . Therefore, the
réstriction imposed by Case (a) can be ignored when average values
of properties are computed. We obtain the interesting result that
we may obtain a quickly converging result for a property with a

wavefunction which is slowly convergent or divergent.
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If we consider the particular solution given by (VIII-28),
62 5,
= t, o2 2
¥(r,t) = ¢a(§)¢2e + ¢b(g)e

and substitute it into (VIII-30), we also find that since terms in
(w)~! appear cnly in Bé(t) » these terms do not appear in P(t) .
These observations are not new. They are discussed in the
Langh&fﬁ—Epstein—Karplus review article.
Now, what about the difficulty described by Case (b)? We

would expect that denominators of the form
AW = nw

would make P(t) wnon-converging when such denominators are zZero or
almost zero. This difficulty has been pointed out to Epstein and he
has suggested* that even though we do not expect convergence of the
series for w < AW because of the appearance of dengminators which
are approximately zero the low order results may have some sort of
relevance since if w << AW the "bad" denominators will not appear
until very high order in the perturbation theory. We therefore

conclude that the series is asymptotically convergent.,

S. T. Epstein, private communication.
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IX. TECHNIQUE T5: DEGENERATE RAYLEIGH-SCHRODINGER PERTURBATIONS:

@ = B % g * & AND ALL ARF MUCH LESS THAN UNITY

In (VII-13)' we gave the convergence conditions for the solution
of (V-5) by a non-degenerate Rayleigh-Schrodinger expansion in the
field strength. The case of a, £, & and § all having the same

magnitude and all being much less than one:
a ~ B ¥ g = § =< 1 {IX-1)

was not covered by (VII-13). This is because the conditions given in

(n) ' of

(IX~1) would give rise to expansion coefficients, the Cy ! s
, ’

(VII-7), which would involve factors of the form

g - 16 ? e - 16

These factors are clearly of order unity if the conditions (Ix-1)
hold. 1If the expansion coefficients are of order unity, we would not
expect the perturbation series to quickly converge.

We can easily overcome this difficulty by splitting up HF in a

new way. The problem with splitting up H_ into a part independent

F
to the field strength and a part directly proportional to the field

strength (i.e. the split-up given by (VII-2) and (VII-3)) is that



when both ¢ and & are very, very small, some of the zeroth order
eigenvalues are almost degenerate. For instance the zeroth order
energy associated with |B,j> differs from the zeroth order energy
associated with |A,j> by the quantity (g - 1i§) which, by hypothesis,
is very, very small. In the new split-up of HF » we will make the
zeroth order energies exactly rather than almost degenerate. This
process is the text-book method of treating the difficulty of an
almost-degenerate zeroth-order Hamiltonian. For example, Messiah
(1964) discusses this general technique in Vol. 2, p. 711. Certain
(1970b), Dion and Hirschfelder give a simple example of this procedure.
As far as we know, no other authors have applied this technique to
the specific problem of the two-level quantum system in a coswt
field. This is not surprising, since the conditions given by (IX-1)
seldom arise. For example, if € << 1, w must be such that it is
much greater than all of the resonance frequencies of the system. This
is clearly a regime of w which is not of great physical interest.

The first step in Technique T5 is to split H_ (defined by (V-2))

F

in the following manner:

H, = ﬁlgo) + Aﬁlf,l) (IX-2)

where A 1is again dn ordering parameter which will be set equal to

unity at the end of the calculation. Bars have been put on ﬁéo) and

=(1
Hé ) to distinguish them from the "unbarred" operators, Héo) and
H(1)

F » Which were defined by (VII-2) and (VII-3) respectively,
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ﬁéO) is defined by
ﬁéODIk,j> = jlk,3> k = A or B (IX-3)
ﬁéo) is a hermitian operator, whereas, ﬁél) is a non-hermitian
operator:
ﬁ§1)|A,j> = al|B,j+l> + |B,3-1>]
=(1) (IX-4)
He''|B,3> = al]a,3+0> + [4,3-1>] + (e - 18)[B, 3>

+ g[|B, 541> + IB,j-1>]

=(0)

Note that HF has degenerate eigenvalues since, ]A,j> and |B,j>

=(0
have the same eigenvalue with respect to Hé )

We agaln wish to solve the Schrodinger—type equation
Holw> = ufw (IX-5)
by assuming that both the eigenvalue, 1 , and the eigenvector, [u> ,

can be expanded in a power series in A

T T I S I (IX-6)
0 n={

=
I
il b3

n
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We can substitute the expansion (IX-6) and the split-up of HF given
by (IX~2) into (IX~5). After regrouping terms in similar powers of
A , we can obtain a solvable'set of perturbation equations. These must
be solved by degenerate Rayleigh~Schr8dinger perturbation theory.*
Once we obtain solutions to the static problem (IX-5), we can
recover the solutions to the dynamic problem of (II-4) and (II-5) by
utilizing the equivalence of the two problems described by (V-7) and
(v-8).

The zeroth order degenerate Rayleigh—Schrodinger equation is:

AOIHONENOIMON (TR

It has as its most general solution

(0) (0 . 0) .
|ut?> N |A,3> + clg |B, 3>
and
0 .
MO
rrh oo e s f‘(o) ﬂ(o) ” — 1 VR | 1
whars Cy and B are constants which will be determined by the

first order perturbation equation. Since the final time-dependent
results are invariant to the choice of 3 » let us, for the sake of

simplicity, take j = 0 . We therefore have

& .
For a discussion of degenerate Rayleigh~Schrdinger perturbation

theory see Schiff (1955}, Pauling and Wilson (1935) or any other

elementary Quantum Mechanies text.
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fu(0)> = c§0)|A,0> + CIED)IB,O>
(0) (IX-8)
! = 0
(0) (0) .
The constants, CA and CB ,» 88 well as the first order

(1)

energy, | » are determined from the first order perturbatiocn

equation:

(OO T CDRN CO N S C Y €O NP

ﬁél)|u(0)> +

Using (IX-8) in (IX-9) we obtain

ﬁél)(c§°)|A,o> + c§°)|3,0>) - ucl)(céo)IA,o> + CéO)|B,O>) (1X-10)
+ 80 s
Equation (IX-10) may first be multiplied by -~A0[ and may then be
multiplied by <B,0l to obtain the following linear homogeneous system

, *
of equations:

ROFCI
(1%-11)
Wel0 D gy

The system (IX-11l) has a two non-trivial, normalized solutions:

*
To obtain Eq. {IX~11l), we use that fact that since lu(1)> may by

expanded in the ertho-normal {[A,j>,’B,j>} basis we have:

<k,0|ﬁ§°)|u(1)> = 0 (k = A or B) .
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Choice I: u(l) = 0, Cio) 1, Céo) 0
(Ix-12)
Choice II: p(l) = (g - 18) , Cio) = 0, céo) - 1

The degeneracy has therefore been broken in the first order of the
perturbation and the higher order corrections may easily be obtained.
We will find that the solution to (IX-5) arising from Choice I will
give rise to one of the Floquet Normal Modes. The solution arising
from Choice II will give rise to the other Floquet Normal Mode.

For example, let ug consider Choice I. Put the subscript "1"

(n)

; i n .
on the perturbation eigenvalues, u » and the perturbation eigenvectors,

|u(n)

> , to indicate that they arise from Choice I, Therefore,

Iu§°)> = |A,0> , ufg) = 0, u§l) = 0.
The first order equation, equation (IX-9), becomes
ﬁ]gl)]A,m +ﬁ§0)lp](_l)> = 0 (1X~13)
In solving (IX-13), we must resolve the question of normalization.

We can choose the component of |u50)> in Iu{n)> (where n > 1)

to be anything we want., We will make the following simple choica:

i s = s (1%-14)
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wf® >,

1f [u§°)> 1s the Choice II zeroth order wavefunction,

is not determined by (IX-13). It is, however, determined by the

equation for |ufz)> .

To detail the T5 procedure, let |u§1)> be expanded in the

spectrum of ﬁéo)

> = T T oDk (1%-15)
k=A,B f=—x

where the céli' are expansion coefficients. Substitution of

Eq. (IX-15) into (IX-13) and subsequent left-multiplication of the
result by each and every <k,%| , gives the following results:
(1) élé is zero by imposing Eq. (IX-14).
(2) élé is not determined by the first order equation.
(1)

(3) All other expansion coefficients vanish except ©p 1 and
1

(1)1 . The former is -¢ and the later is a .

We therefore have

|]-1](_1>> (I)IB 0> + U.[IB =1> - |B 1>] (IX-16)

where cé % will be determined by the second order equation:
- 2 -
A0 [t £ BV (D> = ufP a0 (1x-17)

(2)

We again assume that |u; ’> may be expanded in the |4,j>;]B,j>

basis
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> = I T Bk (12-18)
k=A,B f=—w =7

where the ¢ 's are expansion coefficients and the prime on the
summation means that because of (IX-14) we will exclude the state
|A,0> from the summation. Using (IX-18) in (IX-17), we left-
multiply the result by <A,O| to find

w® o g,

Left-multiplication of the result by <B,0l determines that célé
»
vanishes. cézé » however, is not yet determined. Continuing this
b
procedure with the other <k,£|'s » we find only six non-vanishing

coefficients. The second order correction, therefore, is:

|u1(2)> = Cézgle.m +ae ~ 18)[[B,1> + |B,-1>]

2
+ 0‘T[IA,2> + |A4,-2>] + 52§-[|B,2> + |B,-2>]
After making a spectral expansion of ]uf3)> and then substituting
it into the third order equation, we determine cézé and ufa) by
»
left-multiplying the result by <A,0[ and <B,0’ » Neither quantity
vanishes and we find that

ufa) = 2a2(¢ - 18) o (2)

-2apB
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This procedure may be continued to cobtain a solution of arbitrary
accuracy. We assemble the Choice I results (which are correct through
third order in the energy and second order in the wavefunction) in the

fellowing expression:

Uy = 23202 (e - i8) + ...
¥1> = |A,0> + Aa[[|B,-1> ~ |B,1>]
(IX-19)
+ A2[-208|B,0> + a(c - i8)[|B,1> + |B,-1>] + o.ns

2
+ %?[IA,2> + |a,~2>] + %?[[B,2> + |B,-2>]

Setting therordering parameter, X , equal to unity and utilizing
(V-7) and (V-8) to obtain a time-dependent solution, we obtain one of

the Floquet Normal Modes:

-1 =]
ay e M1t by, (D 5 bp e Mg (1)
u; = 2a2(e - 18 + ...
(IX-20)
= 2
¢a1 1+ g%cos(27) + ...

¢b1 = =Zigsint - 208 + 20(e - 16)cosT + aBeos(2T) + ...
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9 1
The second choice of |u( )> and u( ) leads to the other

Floguet Normal Mode:

az = e_iu2T¢&(T) i b2 e_luzT%z (7
pp = (e - 1i8) = 20%(e - 18) + ...
(IX-21)
¢32(T) = ~2iasint - 20(e - i8)cost + afcos(21) + ...
¢b2(T) = 1 - 2igsint + (a2 + B%)cos(21) + ...

Inspection of (IX-20) and (IX-21), confirms the hypothesis that
they should be quickly converging solutions for the Floquet Normal

Modes when o, B, £ and § are all much less than unity.
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'X. PARTITIONING TECHNIQUES FOR FIELD STRENGTH EXPANSIONS

Introduction

In order to obtain solutions for those cases where the zeroth order
energy of the Floquet Hamiltonian is almost (or exactly) degenerate, we
can use the standard partitioning perturbation techniques. Liwdin's
(1966) procedures may be the most familiar but we shall describe how
the Certain~-Dion-Hirschfelder (1970a, 1970b, 1970c) version applies to

the Floquet problem. In this way, when we solve

Hplw> = wlw

we obtain the wavefunctionm, [u> s accurate through the n-th order in
the field strength and, correspondingly, the energy accurate through
the (2n+l)-th order. However, this procedure is not a Rayleigh-

Schrddinger perturbation since the energy is not expanded in a power

series in the field strength.

General Considerations

Iﬁ section VII we discussed the solution to (II~4) and (II-5) by

splitting up the static Floquet Hamiltonian into a zeroth order part,

Héo) » which did not depend on the field strength and into a perturbation,

Hél) » which directly depended on the field stremgth. We saw that if we

applied non-degenerate Rayleigh-Schrodinger perturbation theory to HF
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split up in this manner, the resulting solutions would only converge
for certain ranges of the parameters o, B, £ and ¢ . Those ranges
were given by (VII-13). The problem was that G (defined by (VII-8))
would be large for ranges of & and § which made the denominator in
G very small. Suppose, for simplicity, that only one (ué?i - uégzno

in all of the possible G's is small enough to make the fraction €

much larger than unity. Call it

(o) (0)
- u X-1
(“k1,n1 kg,ng) (X-1)
If we could somehow exclude the term involving the very small or

vanishing quantity

o)y  _ (D)
(ukl’n1 Hkpsmg

from all higher order corrections to the zeroth order eigenfunctions and
eigenvalues, we would then obtain a quickly converging perturbation
expansion. The technique which accomplishes this is partitioning
perturbation theory. The technique is not restricted to the case of
there being only one "bad denominator" of the form (X-1). For our

purposes, however, we need only consider this case.
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The bad denominator appeared in the non-degenerate Rayleigh-

Schrédinger perturbation expansion hecause two zeroth order states,

0 (0)

> , had zeroth order energiles which
ki,ng kg.ng

the states !u and lu

*
were almost (or exactly) degenerate. This caused poorly converging

higher order corrections. The idea behind partitioning is that instead

(0)
kl’nl

of solving for either the perturbed state arising from Iu >

(0)

» we solve for the
kp.ng

or the perturbed state arising from Ip
perturbed two component row vector, ¥ , which arises from the zeroth

order 1 x 2 now vector

(0) (0) (0) '
x0T = e e ) (x-2)

© As we will show, doing this we can aveid "bad denominators' of the
form (X-1) appearing in the final energies and wavefunctions. Now
what is this row vector x ? To answer this question, let us first

assume that we have solved
H > = U L2 j = 1,2 X-3

where uj is an eigenvalue of HF and |pj> is its associated
eigenvector. We can write these two Schrddinger equations in matrix

notation:

*

For example, if 8 =0 and e = 1 , the states |uioi> and |u§°%>
¥ L4

have exactly the same zeroth order energy.
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HF ¥ = VYW {X-4)
where V¥ 1is the two component row vector
Y = Uui> y Ju>) (X~5)

In order that (X-3) be satisfied, we define W to be the following

2 x 2 matrix:

wp 0
W= (X-6)
B 0w
x may now be defined in terms of ¥ : the row vector X _is a two

component vector, each component of which is a linear combination of

two exact solutions to the Schrddinger Equation, Ju;> and Jup> .

In matrix notation, we may therefore write y in terms of V¥

~

and a 2 x 2 non-singular matrix of constants c

-~

(X-7)

[
]
g
X e]

Since

-1 (X-8)

L =]

]
[ a4
ne

we may use this expression for ¥ in (X-4). We may then right multiply

result by ¢ to obtain the following "scrambled" Schrodinger Equation:

~
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Hox = xE (X-9)

where E dis a 2 x 2 matrix defined by:

]

(X-10)

i tx]
]
N
|
—
n=
ne

In partitioning perturbation theory, we solve equation (X-9) (which

is a "scrambled" Schrddinger equation) rather than the Schrédinger
equation itself (equation (X-4)). We will find that if we perturbatively
solve (X-9) we may avoid the "bad denominators" which appear in the
straightforward non-degenerate Rayleigh-Schridinger perturbation

solution of (X-4).

Exact Solution of (¥-~9)

Assume we have solved (X-9). We therefore know ¥ :

x = > s |g? (X-11)
where we have written out the (1,l) component of ¥ as ]xa> and
its (1,2) compoment as lxb> » E will be a 2 x 2 matrix and it

is not necessarily hermitian. The 2 x 2 matrix ¢ which relates

¥ toe Y 1is npot necessarily unitary. If & = 0 , however, HF

~

becomes a Hermitian cperator. In this case, we make E hermitian

and ¢ unitary by specifying that ¥ 1is normalized according to

-~ ~

"Certain-full-normalization.'" By this we mean that we require

<x|x> =1 (where 1 is the unit matrix) and we require that the

-~
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phase of ¥ be determined according to equation (17) of Certain
and Hirschfelder's (1970a) paper.

The prescription for recovering Y and W is this. We may
recover the diagonal elements of W as the roots to the following

=

secular equation (the off-diagonal elements of W are zero):
-]- _ -
det|x' (Hp-W)x| = 0 (X-12)

where in defining x% we must take note of whether Hp is hermitian
or non-hermitian.

Case (1). Let H_ be hermitian and let

F

= (£, C. [§>,Z. C.,|3») where the C.,'s are expansion
x = 3y ¢, 57,5, ¢y |3 51 P
coefficients and the index j ranges over all members of a basis

set which spans HF . For this case x+ becomes:

+ _ * L3 T
X = (§ Cja<j|,§ Cjb<jl) (X-12a)

where "T" indicates taking a matrix transpose. Thus in this case,
§+ is just the hermitian transpose of ¥ .

Case (2). Let HF be non-hermitian, and in particular, let it
be given by Eq. (V-2). Let x be expanded in the ([A,j>,[B,j>)

basis:

w0 -]

x = (] !¢, (a)|k,1>, C .(b)|k,3>)  (X-12b)
" k=a,b j=-= k] kza,b jg-m k] -
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where the ij(a)'s and ij(b)'s are expansion coefficients. For

the case of H, being given by Eq. (V-2), xT is defined by:

X' = (] I c(@<,il, | I 3Dt (x-120)
e k=a.,b j=— s k:a’b j=— a

where the "T" again indicates taking a matrix transpose. Note that
when & = 0 , Case (2) reduces to Case (1) because d and R have
been defined as real.

In terms of the components of ¥ , the secular equation (X-12)
explicitly is:

r B
alXg” xalxb>

A

< !
Xg [Hpix,>  <x Iy, > <X
det -W
Xl Hpl,> < [Hg x> <l < >

fl

0 (X-13)

vhere again we must take care in defining the matrix elements. Let
HF be given by Egq. (V-2) and let O be an operator equal to Hp

or unity. Using the definition of ¥ given by Eq. (X-12b) we have

o ldlx > = E 1{ E' Cy @) Ck,j,(m)<1c,jiallc',j'> (X~13a)

|

e r

where %, m, k and k' can equal a or b and j as well as j'
ranges from -= to 4

Call the twe rocts of (¥-13), i and -up . W therefore is

-~
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If the eigenvector associated with u; 1is put in the first column
of a 2 x 2 matrix and if the eigenvector associated with g is put
in the second column of the same 2 x 2 matrix, the resulting matrix is

just ,g"l (the inverse of the square matrix ¢ in (X-7)). Therefore

-~ -

¥ 1is recovered by:

-1 ‘ (X-14)

ie
It
e
no

Perturbation Sclution of (X-9)

In what went just before, we assumed that we knew the solution to
(X~9). TFor the salie of colpleteness, we showed how to unscramble
(X-9) to recover the solutions to the Schrddinger equation, equation
(X-4). in point of fact, (X-9) is every bit as difficult to solve as
(X-4). To solve (X-9) we must use perturbation theory.

Assume that HF has been broken up according to the field strength

expansion:

- (1)
Hp = Hp'* + 2y (x~15)

(G}
F

where H is defined in terms of the |k,j> basis by (VII-2) and

1). ‘
Hé ) is def%ned in terms of the same basis by (VII-3). X is an ordering
parameter.

We will further assume that both ¥ and E may be expanded in

powers of A
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5,0 (o) T 0 ()

x = A% B = 1B (X-16)
~ n=0 - -~ n=U i

The x<n)'s are 1 % 2 row vectors and the g(n)'s are 2 * 2 matrices.

After substituting the expansions (X-15) and (X~16) into (X-9), we

may group terms in like powers of A to get the following sclvable set

of matrix perturbation equations:

H§O)E(G) _ E(O)E(O) (X=17)
i x MmOy e @O 5 g
Héo)y(z) N H§1)§(1) _ 5(0)5(2) + >~((1)13(1) + >~<(2)5(0)
(X~19)

. &tc.

If the zeroth order states ’kl,n1> and lko,ng> are almost {or

exactly) degenerate, we would choose

4
x( ) - (lk3om1> 5 |kg,ng>) (X-20)
and, therefore,
0
DR
NONS
0 u(O)

kg 'Y ]
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where uée)n is the zeroth order energy associated with ki,n>
1,1}
and “£O)n is the zeroth order energy associated with the state
0>

Ikg,ng> . The perturbation equations can be solved order-by-order

if we choose "intermediate" normalization which is defined by:

), @, _
<Xi lxj > o= GQD 6ij

r

wherse 1,y =aorb and 6 . and ﬁij are Kroneckar deltas.
n

The Important point in this perturbation theory is, however, that it,
unlike the Rayleigh-Schrddinger treatment, allows us to avoid bad

denominators of the form

)y (o)
k1,0 kgsng

in the higher order wavefunctions and energies,

Introduction of some new notation is in order at this point.

0
Assume that we know x( ), x(l), x(z), S

partial sum, y(N) , by:

\0 (n)

x(§) =
b ) -

{(X-21)

I 1=

n

We can make analogous definitions for the components of ¥

ceey X . Let us define the .
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¥ a () ¥ 0 @
[x, > = [ A% 5 [y 0> PR (x-22)
0 n=0

n:

If we have solved the first (N+1l) perturbation equations so that we

know x(N) , we may recover approximations to two eigenvalues and two

eigenvectors of by forming the approximate secular equation:
g2 q

sop| [ 00 HEb, (D <, (9 [ [, )
1, 09 [Hg (0> <, 00 [ty [, G0

<x (M) | x_(N)> <y (N) |y, (N)>
-w @ I M = 0 (X-23)

X (M [ 3, (0> < () [, (D>

where the above matrix elements are defined in analogy to Egq. (¥XI~13a).
We call (¥-23) an "approximate" secular equation because its roots

are approximations to the exact solutions to (X-4). We will call the
two approximate roots to (X-23) u;(¥) and uy;(N) . We will use the
argument "N" on the approximate roots to indicate that they arise from
a secular equation in which the x 1s accurate through N-th order.

The roots themselves are accurate through (2N+1)-th order.

Associated with the approximate root, p, (N) (j = 1,2) , is an

3

approximate wavefunction. Call this approximate wavefunctions iuj(N)>

We can obtain [uj(N)> from the secular equation (X-23) in the

¥*
following manner. Associated with the root uj(N) is the eigenvector :

The odd-looking notation for the vector-components is chosen to keep

this discussion in accord with equation (X-14).
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p

PR
C(N)jl
+—1
c(N)j2

With this eigenvector we can recover the approximate wavefunction

associated with uj(N) by the following relationship:
o = -l " -1 _
lyy > = e [, 0> + ey [x, @)> (x-24)

N
The ]uj(N)>'s » however, are correct only through order A .
In the partitioning, therefore, we may obtain a whole heirarchy
of approximate expressions for p and |u> » depending upon the

accuracy of the x we use in the secular equation (X-23). If, for

example, we use x(0) _in (X-23), we will call the resulting

approximate uj(O)'s and lpj(0)>'s the "zeroth order” partitioning

approximation. x(1) will give rise to the "first order" partitioning

approximation, ete.

In terms of the time-dependent Floquet Normal Modes, the uj(N)'s
correspond to approximations to the Floquet characteristic exponents.
The ¢-part of the Normal Modes may be recovered from (X-24) (i.e. the
eigenvector associated with the root uj(N) ) by using the equivalence
between the static problem and the dynamic problem described by (V=7)

and (V-8).
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Converpence of the Partitioning Perturbation Theory

We intend to use partitioning to include some of the ranges of the
parameters which are not covered by the cases given in (VII-13).
Specifically we will use it to cover the cases in which §, a, and
B «< 1, but ¢ = D (where nr is some non-zero, positive integer).

The cases in which g = n_ are very Interesting. When £ = 1 |
this means that the frequency, w® , is nearly or exactly equal to the
separation between energy levels, AW . This is, of course, the
Bohr Frequency Condition (with - set equal to unity). Thus when

e * 1, we are describing the two-level system's Main Resonance. Finding
v

partitioning perturbation approximations in this regime is fully
discussed in Section XI of this report. The cases in which ¢ = n_

where n is some integer greater than one, correspond to the

system's Sub-Harmonic Resonances. These are more fully discussed in

Section XII of this report.

If e = n, and § is very small {or vanishing), let

= ase 1B (%-25)

jp any integer or zero

We have made this choice because

® ) L
i-‘A,j{) uB:jO"nr - (nr e + 16) = 0 (X-26>
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and with this choice, the partitioning theory enables us to aveoid the

occurrence of small dencminators such as (X-26) in the higher order

corrections to x(O) {and therefore in the approximate expressions for

-~

the solutions to HF]u> = p}u> Y.
Let us assume that the components of X may be expanded according

to (X-22). The functions ]xén)> and ’xén)> may in turn be expanded
(0)

in terms of the spectrum of HF in this manner:

n
B R e [R
1=A,B n=-w ?
(X-27)
n v (n)
|X}§ )> = Z‘ Z' dﬂ. m|£’:m>
2=A,B m=-w ’
where the géni 's and the déni 's are the expansion coefficients and
>

the primes on the summation signs mean that the states |A,jg> and
IB,jg—nr> are to be excluded from the sums. The important thing we

wish to stress is that the gini 's and dén; 's may be expressed
» L)

as products of terms of the form

<k,niHél)ik',n'>
T T (x-28)

Yk,n kyang

(o) . (0) ,
The Hz,m $ are eigenvalues of HF :

(0) = .0
HF Iz,m> = uﬁ,mlg,m> .
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(X-28) differs from a similar expression which we used to discuss the
convergence of the non-degenerate Rayleigh-Schrodinger perturbation
series (i.e., expression (VII-8)) only by the restrictions placed on
the indices. In (X-28), 4f kg = A , then ng can only equal 3 .
If kg =B, then ng can only equal (jq - nr) . If k= ks then
n  may not equal. ng . If kyg=A, then n may not equal (jg - nr) .
Similarly, if kp = B , then n may not equal jjp . Otherwise, k
and k' may be either A or B . n and n' can equal any integer
from -« to +w ,

If all terms of the form of G are small, we would expect that
the partitioning perturbation expressions for the u(N)'s and
|u(N)> 's would be quickly converging.

(1)
F

From the definition of H in (VII-3), the numerator of G can
be either a, B or zero.
In considering the denominator of G , we will look at the

following three cases:

A or B.

Case 1: k = kg

If k = kg A or B , the denominator of G is always some non-

zero integer. In this case the smallest magnitude of the denominator
is unity. For terms of the form G to be much smaller than unity we

require:

both & and B should be much less than unity.
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Case 2: k # kp = A3 § << 1.

In this case, the denominator of G 1is of the form

(n+e - 16 - §p) . (X-29)

Since n can never equal (j, - nr) , (¥-29) is of the form

{(m - 1i8)

where m is some (positive or negative) non-zero integer. Clearly,
since § << 1, (m ~ 18) 1is of order unity or larger. Thus we get

no additional requirements for the speedy convergence of the partitioning
perturbation series.

Case 3: k # kp=3B; & << 1,

The arguments and conclusions in this case are the same as those
we used in discussing Case 2.
We may therefore summarize and conclude this discussion by saying:

If g = n where n, is a positive non-zero integer and, if a, 8

and § are all much less than unity, we may use partitioning perturbation

theory to obtain'rapidly converging field-strength perturbation solutions

to HF|p> = u|u> .
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XI. TECHNIQUE Té: TITIONING PERTURBATION THEORY PLI TO THE
MAIN RESONANCE: e =~ 1 . o 8 AND & ARE ALL MUCH LESS THAN UNITY
Introduction

In this section we will discuss the solutions to
Hpluw> = ufw> (XI-1)

under the conditions that € = 1 and &, B and § are all much less
than unity. In terms of the non-reduced parameters, this, of course,
means that w = AW . The conditioms are therefore the conditions
under which. the Bohr Frequency condition is met: (Wb - Wa) = Hy .

To separate this regime of ¢ = 1 from the regime of ¢ = n,
where o, is some positive integer greater than unity, ls somewhat
artificial. Partitioning pertubation theory is used to-handle beoth
regimes. The separation is justified, however because of the great
amount of previous work devoted to the case of & = 1 .

We split this section up into two parts. In the first part we
use partitioning perturbation theory to obtain systematic, converging
approximations to the eigenvalue-eigenvector problem given by (XI-1).
Once (XI-1) is solved, we can recover the time-dependent solutions to

(II-4) and (II-5) by utilizing the equivalence between the static and

dynamic problems which we have already established. Our method of
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solution closely parallels that of Shirley (1965). We differ from

Shirley in not restricting our attentlon to the special case of

Vaa = Jbb P f Ry 0 . Furthermore, Shirley uses a partitioning
scheme formulated by Salwen (1955) in which the higher order
correctionsg to X(D) are only approximately found whereas we obtain

exact solutions for the higher order corrections to x(O) .

In the second part we discuss how our work fits in with the work
previously done on the main resonance of the two-level system. We
find that the partitioning perturbation theory is a useful tool for
relating and comparing our work with that of Rabi (1937), Bloch
and Siegert (1940}, Stevenson (1940), Shirley (1965), Silverman

and Pipkin (1972), Winter (1959) and Pegg (1973b).

Part 1: Partitioning Perturbation Solutioms When ¢ = 1 ., o, B and

§ Are All Much Less Than Unity.

When ¢ :z 1 and § << 1, the kets |A,jg> and |B,j0—l> are
almost degenerate with respect to Hé?) when Jj; is either zero or
any positive or negatlve integer. In order to avoid perturbation
denominators of the form (¢ - 1 + 16) which result from this almost
degeneracy, we use partitioning perturbation techniques. First, HF
is split Into a zeroth order part which is independent of the field
strength and a first order perturbation proportional to the field
5(0)

strength., Then we choose to be the two-component row vector:
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0
><()

= (|as3p>s |Bsdo-12) (X1-2)

where jp 1s any integer or zero.

Since the final time—dependent results for the characteristic

exponents and the Fourier components do not depend on the choice
of jp , we will for the sake of simplicity choose jg =0 .

Therefore let

X(D) = (IA,0>, lBs"l:’") (XI-3)

The Zeroth Order Partitioning Approximaticn

)

Since we have chosen ¥ by (¥I-3), we may now obtain the

zeroth order partitioning approximation. This involves solving the

secular equation (X-23) with .N = 0 . By definition,

0
@ = x. (RI-4)
With this expression we may explicitly write the zeroth order secular

equation:

~-W o
det = 0 (%1-5)
o {(e=-1-14)-W
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In writing the zeroth order secular equation we have set the ordering
parameter, A , equal to unity.

There are twe roots to (XI-5), u;(0) and ug(0) , which
correspond to approximations to the Floquet characteristic exponents
accurate through first order in the field strength. The roots are

explicitly given by:

1

10 = Kl - 1~18) - {(e - 1 - 18)2 + 4a?}75] (XI-6)
] - %

H2(0) = 280(e - 1 - i8) + {(e ~ 1 - i8)2 + 4a2}/2] (XI-7)

Using the notation already defined in section X, we may write

the eigenvector associlated with uy(0) as:

-1
1 c(0):
= i (XI-8)
n3 (0)/a e(0),;

Assoclated with the root u,(0) is the eigenvector:

@/ (0) c(0)];
-] ~1] (XI"Q)
1 c(O)22

Using (X-24) and (XI-8), we may write the approximate wavefunction

agsociated with the approximate root ¥1¢0) as:
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u1(0)

" |B,-1> (XI-10)

luy (0> = |A,0> +

Associated with the approximate root up(0) is:

|uz(0)> = uZ%O) |a,0> + |B,-1> (XI-11)

With these approximate energles and wavefunctions, we can use
the equivalence between the static and dynamic problems to obtain
the "zeroth order' partitioning approximation for the two time-
dependent Floquet Normal Modes:

First Mode

w1 (0) = }f[(a - 1-18) - {(e -1 - 16)2 + 4&2}}§]

~iu; (0
&1 ¢ h (O ¢al ’ ¢al =1
0) (X1-12)
-iuy (0 Q. -1
b, = e (0T bp1 3 %y, (Ha——)e B
Second Mode
up(0) = }{[(s -1-18) + {(e-1-182+ 4@2}}5]
g, = ¢ 1u2(0)r bap 3 Pap ® a/uy (0)
‘ (XI-13)
b, = a-iUZ(O)T by b ¢b2 - e-iT
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Again we wish to note that in these 'zeroth order" expressions
for the Floquet solutions the characteristic exponents are accurate
through first order in the field strength whereas the "¢-parts" of
the Floquet Modes are accurate only through zeroth order im F . It
is alsc interesting to note that the parameter R does not appear
in this zeroth order approximation. It does, however, appear in the

higher order partitioning approximations.

The First Order Partitioning Approximation

We may obtain more accurate results for the Floquet Normal Modes
by using the "first order" partitioning approximation. By this we
mean that we find an expression for the row vector yx which is
correct through first order in the field strength, i.e, we determine
x{1} . This x(1) is then used in the secular equation, (X-23).
The resulting secular equation may be solved to obtain two roots,
u1(1} and Wuy(l) , which correspond to approximations to the
Floquet characteristic exponents which are accurate through third
order in F . The approximate eigenfunctions, |u1(l)> and
]u2(1)> » which are related to py(l) and ¥p(l) respectively may
be used to obtain the "¢-parts" to the Floquet Normal Modes which
are correct through first order in F .

We have already chosen

X(U) = (]A:0>9 IB:-l:") . (XI"].A)
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In order that the zeroth order perturbation equation

g0’ X(o) - X(u) E(G)

-~

be satisfied, we must choose

b

0 0
o . (XI~-15)
0 (e~1-i8)

1
X( ) obeys the equation:

© 0, OO @0,

(0) (1)

H (XI-16)

In solving (XI-16), we must specify the normalization of x(l)

We will choose "intermediate normalization':
<k.2|X§1)> = 0 ; j=aorb; (k,2) = (A,0) or (B,~1) (XI-17)
Substituting -

MCRNONINON

~

into Eq. (XI-16), we obtain the following equations for |X£1)> and

|xé1)> :
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BN wW a0 = @®yyy)a,00 + @Dy, 08,015
(XI-18)
m _ 14 16]|x£1)> +iWVp,-1> = (g(l))1z|A,O> + ®V),,08,-15
(XI-19)

" To fulfill the normalization condition in Eq. (XI-17), we let

(1, _ S, )
x> LZA B mg—m Bmh = 8g,a80,00 ~ 8 g8y, ) 1w
(XI-20)
(1) = s (1) _ )
% zzA B mz_m d,m@ ~ 8paln, 00 - 8 go P ]ew
(XI-21)

where the gcl)'s and d(n)'s are expansion coefficients and the
%,m L,m
61 j's are Krbnecker "deltas." Substituting the expansions (XI-20)
1}
and (XI-21) into Eqs. (XI-18) and (XI-19), we multiply the resulting

equations first by <A,0| and then by <B,-1| to find:
(1) - _
(E )ij u(ﬁij L

where aij 1s the Kronecker "delta." In a similar manner we find:
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o4

(n -
x> v IoIm B
(XI1-22)
1
|X£ Y, o 8(|B,-2> - |B,0>) + I - ) |A,-2>
Setting X equal to unity x(l) is simply
0 1
(@ = @4, ®
oy . . _ (1) i _
where ¥ 1s given by (XI-14) and ¥ is given by (XI-22).

We may now form the first order secular equation by using

¥(1l) in (¥X-23) to obtain:

det -qu = 0 (XI-23)

where A has been set equal to unity and where:
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hy; = -o?/(e + 1 - i8)

his = hpy = a+ aB/(e + 1 - 18)

hypp = (e -1 - 48)(1 + 282) + 2a2(e - i8)/(e + 1L - 18)2  (XI-24)
s17 = 1+ a?/(e+ 1- 18)2

sppg = 1+ 282 4+ a2/(e + 1 - 18)2

Just as we did in discussing the zeroth order partitioning
approximation, we may use the j-th root of (XI-23), uj(l) (j = 1,2),

and its associated eigenvector

1

C(l)Ij

c(l);;

to obtain approximate expressions for the time-dependent Floquet

Normal Modes.
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- -1 (1
ay o i (D ¢a1 ;b e Hp (DT ¢b1
2
(1 = }/[hzz L " bpp  Puy2 4(h11h22 = (hyy) )}Pb]
M1 2'spp | 81 S22 $1] $11832
-1 hio
l —
c(L2] (s11u1€1) - hy) (XI-25)
-1 _2%
uc(llal e it
A A T
it .
-a e -1, -it =2iTt
= -+ -
b1 (e + 1~ 18y T eDalle Ble D]
Second Mode:
-1 Lt | ~ius (1)1
ap e 1U2( ) ¢az : by e 2 ¢b2
hyp,  hy, hyp  hy1.5 hyihyp = (hyp)2 1
1 === + AL =22 + 142 _
H2 (1) /5[822 511 [(322 511) ( 811822 2171
-1 hy,
1 —
-1 Q t=_'_2j"r
a2 ez + w37 15
-1 it
_ -ir =24t C(l)‘lz ae
b, = e *8le V-7

The s,,'s and hij's which appear in (XI-25) and (XI-26) have

1]

already been defined in terms of the fundamental parameters of the

problem by the expressions in (XI-24).
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The Second Order Partitioning Approximation

We may use partitioning to obtain still better approximations.

For example, we may form the second order correction to X s

@, @,

a ~

5(2) - (l§

This function is found by solving (X-19). If we impose intermediate

normalization

<k,£IX§2)> = 0; j=aorb; (ki) = (4,0) or (B,-1)

we find the following results for |X;2)> and |Xé2)> .

(2) _ ol aB
%> =TTy Ua - aw) - oy 13,0
ap _ uB]B,2>
sl ey sl |2 2T I - i) (e F 2= 19)
(XI-27)
(2)  _ af _ aBla,1>
lXb> (s+2-ié)lA’3>_(s-2-i’6)
.@i a? _ Ei _ o
Tt E T o By + G TS

Using (XI-3), (XI-22) and (XI-27), we may form ¥(2) . This x(2)
ls correct through second order in A  and it may be used to form

the second order partitioning secular equation, i.e. equation (X-23)



11-13

with N =2 . We will obtain from this secular equations two roots
correct through fifthorder in F . These roots correspond to the
Floquet characteristic exponents. We will also obtain two
approximate wavefunctions, |uj(2)> j=1,2 , which will be correct
through second order in F . These will correspond to the "é-parts"
of the Floquet Normal Modes. The explicit results of the second
order partitioning approximation are not given since

they are algebraically cumbersome.

Part LI: BRelationship of Partitioning Perturbation Solutions to

Other Solutions. ¢ = 1 .

Since the regime of e = 1 1is of great spectroscopic interest,
many authors have conéidered the two-level system at its main
resonance. Since the problem is usually considered with B =6 =0,
we will first discuss the solutions under the conditions that

B=6=01

Textbook Scolutions: B = § = 0

If we set B and & equal to zero, equations (II-4) and (II-5)

become

= =24ig cosT b

v

(XI-28)

e

= ~i¢b - 21c cosT a
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®
The usual textbook solution to (XI-28) proceeds in the following

manner. First transform (XI-28) by letting
b(z) = b'(ve

The equations for b'(rt) and a(r) therefore become:

=24t

-ie(l + e ')

~i(e ~ Db'(0) - 1a(e®’T + a0

a(t)

] (XI-29)
b’ (1)

it

The prescription is to now neglect all of the time-dependent coefficients
in (XI-29) to obtain an easily soluable system of two linear coupled
homogeneous differential equations with constant coefficients. The

. . ra . , . e, , x21
justification of this prescription is that the (e t

} terms are
negligible because they are quickly oscillating and therefore average
out to zero. There are two linearly independent solutlons obtained

by this prescription and they are:

1 ]

a1 = expl-s[(c - 1) ~ {(c - 1)2 + 4a2}2]]
. (XI-30)

by = -2-1;[(5 - 1) - (e - 12 + 402} % a7 HT

*
See, for example, L. D. Landau and E. M. Lifshitz (1965), p. 139,
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- 2a eiT bs
a2 [(e - 1) + [(c - D2 + 4a2] %]

(X1-31)
- 7 1 0
by, = e ' exp[—%[(s - 1)+ {(e - 12+ 4&2}/51]]

By inspection we can see that (XI-30) is the same as expression
(XI-12) 1f, 4in (XI-12), we set § equal to zerc wherever it appears.
Similarly, (XI-31) is equivalent to (XI-13). The "textbook"
solutions are therefore just the zeroth order partitioning
perturbation approximation to the Floquet Normal Modes. The
partitioning theory therefore gives a justification for the ad hoc
"textbook" method of solving (XI-28).

The solutions given by (XI-30) and (XI-31l) are the exact solutions

to the Schrddinger Equation for a spin 55 particle in a rotating
magnetic field. These exact solutions were first derived by Rabi

(1937). When (XI~30) and (Xi-31) are used as approximate solutions

for a two-level system in an oscillating field, it is customary to

call them the "Rabi Rotating Field Approximation.!

Bloch-Sieggrt Solutions: R = ¢ = (

The first attempt to improve upon the Rabi Rotating Field
Solutions was made by F. Bloch and A. Siegert (18940). Their
impertant work led to the realization that the main resonance of a
spin }5 system (or, equivalently, of any two-level gystem) in an

oscillating linearly polarized magnetic (or electric) field would
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not occur at the frequency w = AW (or, € = 1), but would be slightly

"shifted," i.e. would occur at a frequency wg such that
wg = A W+ terms proportional to the field strength.-

In their treatment, Bloch and Siegert change the independent

variable in Eqs. (XI-28) to
x = 2t + 2%

and they then derive an equation for the quotient u(x) = a(x)/b(x)

-g—;— = iacos(x/2) + E%E ~ iacos(x/2)u? (X1-32)

Blech and Siegert further assume that u(x) has the following
functional form

eix/Z mei (z(x)-px) /o]

u(x) = 1 G (XT-33)

where
R = -i'%[(l—a) + ((1-2)2 + 40:2);/2]

- & L



11-17

and z(x) is a function which is to be determined. Using Eq. (XI-33)
in Eq. (XI-32) we find that z(x) is determined by a non-linear

differential equation:

R T e B ol i | B s T
+ e-lz(e—i(l—p)x _ ﬁ%_ei(1+p)x)
where & = a2f4p .
At the main resonance, e = 1 and A = of4 , A is clearly a

small quantity if the field strength (and, therefore, o ) is small.
Bloch and Siegert, consequently, use perturbation theory to solve

Eq. (XI-34) after first assuming

2(x) = J§ a"® (X1~35)

n=0
The zeroth order scolutiom to Eq. (XI-34) is z(ﬂ) = ¢ where ¢ 1is
an arbitrary constant. Choosing z(o) =0 we find that at x =0,

the zercth order approximation to u evaiuated at x =0 has the

value = . This corresponds to the system's being 1n state wa(g)

at x =0 . Choosing z(o) = 0 further gives the following zeroth

Q

*
order approximation for a (x)a(x)

-e32 2
a*(x)a(x) . L E)(lf8§§ ilzggspx) (XI-36)
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Eq. (XI-36) corresponds to the Rabi Rotating Field approximate
expression for the amplitude a*(x)a(x) « Finding the higher
order corrections to z(x) may, therefore, be thought of as finding
corrections to the Rabi Rotating Field approximation.*

The Bloch-Siegert technique is cumbersome to work with; it
makes no reference to the known Floquet Form of solution, and it lacks
ease of extension to quantum systems with more than two energy levels.

For these reasons, we do mot recommend its use.

The Stevenson-Moulton Approach: B =48 = 0

Soon after Bloch and Siegert's work was pﬁblished, Stevenson
(1940) rederived their result for the "resonant shift" using less
cumbersome techniques.

Stevenson's starting point is equations (XI-28). He makes
explicit use of the Floquet Theory by assuming that a(r) and

b(t) may be written according to:

a(1) 9, (1) e 1uT
(XT-37)

b(t)

¢b(T) e—iur e-lT

We wish to note that the equations for z(n) (n > 0) are solvable
only after exp[+iz(x)] has been expanded in the usual series

expansion for the exponential:

exp[tiz(x)] = 1 # iz(x) - W[z(x)]2 F ....
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where u 1is a constant and
¢i(r + 2n) = ¢i(T) i=a,b

The equations for the ¢i's become:

2iT

§, = dwe, - ia(l +e e,
(XI-38)
b, = tue, - i(e - Doy - i@l + ey

The technique which Stevenson recommends is one due to Moulten
(1920). It is one in which the time-dependent terms in Egs. (XI-38)
are taken to be perturbations on the static terms. This is formally

accomplished by replacing any o which multiplies a time-dependent

term in Eqs. (XI-38) by (Aw) where A is an ordering parameter,
The quantities u, ¢a and ¢b are expanded in powers of X and a

set of perturbation equations are derived which may be solved under

*
the stipulations:

(n)

i is constant for all n .

¢§n)(r) = ¢§n)(r + ) 3 all n; § = a,b .

*
Note that because of the transformations of Eqs. (XI-37) the

"¢-parta” of the Floquet solutions have periodicity = rather than

periodicity 27 .
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The zeroth order solutions obtained by use of this technique are just
the Rabi Rotating Field approximate solutions, i.e. Egqs. (XI-30) and
(XI-31). The higher order corrections may, therefore, be thought of
as corrections to the Rabl solutions. This technique differs from
techniques such as Technique T2 (see Chapter VIII) in that the

equations for the correction functions are inhomogeneous coupled

(rather than homogeneous coupled) differential equations. The
Stevenson-Moulton technique is similar to Technique T2 in that the
u(n)'s and the constants of integration (aside from normalization)
are determined by the requirement that the ¢j's be properly periodic.

There is, however, a problem with the Stevenson-Moulton technique:
the perturbation series 1s not quickly convergent. To most easily
demonstrate this, we reformulate the dynamic problem of Egs. (XI-38)
as a static problem.

As we have done before, we use Floquet's theory and Fourier's
Theorem to write:

i T a2

Aj e ; ¢b = Z Bj e T (X1-39)

J=-e

where Aj and ﬁj are constants and where we use the fact that the
¢—functions in Eqs. (XI-38) have periodicity = rather than
periocdicity 2rn .

Substituting expressions (XI-39) into Eqs. (XI-38), we derive

static equations for M and the Fouriler expansion coefficients.
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(23 - H)Aj + aBj + aABj+1 = 0
{X1-40)

25 + [e-1] - WB, + oA, + a)A, = 0

(23 + [e-1] - W) 3 y 5-1
In order to reformulate the problem posed by Eq. (XI-40) into a
problem which has zeroth order solutions corresponding to the Rabi.
approximate solutions, we merely need to change basis by defining

the coefficients Pj and Qj

(o)
M
P, = A, +—— 8,
i 3 o 3
u(O) (XI-41)
Y = 4T
where
= LD = A
and
R = (e-1)2 + 4a?
From Eq. (XI-41) we write:
) uio) ufu)
A, = — -——P
3 S R~
(X1-42)
Bo= & -
BJ = p= (Pj QJ)
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Using these definitions and using Eqs. (XI-40), we find the aquations

for P. and Q.
J ]

(0)
Au 2
. (0) + . (0) _ (0 ra? _ =
{X1-43)
(0)
Au
. (0) Ao? - (0) _ -
(23 +u "7 - u)Qj + ;%f(Pj+l - Qj+1) + Cuy Qj_1 Mo Pj_l) = 0

(XI-44)

In exact analogy to what we did in Chapter V, we reformulate

Eqs. (XI-43) and (XI-44) into the Schrddinger-like problem:
H lw> = ulw (XI-45)

where Hs is an operator, u is an elgenvalue and [u> is a
function which may be expressed in an orthonormal basis composed of

all the |P,j>'s and [Q,i>'s :

<k,%|m,n> = S mSem
? 3

where k,2 =P or Q and j is any integer including zero. HS is

written as

g o= g9 4 (XT-46)
S s
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where
HS(O)IP,j> = (23 + u_f_o))lP,P
{(XI-47)
00,3 = @5 +u'))e,5
and
(1) iy (0) (0) 2
1 + 0 0 o . .
Ho /[P, 3> = ——u 7 [Q,5-2> = w7 |P,j-15) + 2=(|p,3+l> - |q,j+L>)
s R OT - /R
{XI-48)
2 ul” (0) (0)
(1) a . - 0 . 0 .
H 2 1Q,i> = ==(|P,3+2> - |Q,i+1>) + —(u."’|q,j-1> - u " |P,3-15)
5 /R- ‘/E + -
(XI-49)

We recover the solution to the dynamic problem of Eqs. (XI-38)
from the solution to the Schridinger-type problem of Eq. (XI-45) by
the following prescription. Assume we know [u> and ¢ . In

particular, assume we know [u> as:

<0

p> = 7 ) c.jli,j> (XI-50)
1=P,Q j=-=

where the ¢, .'

i,]
coefficient of |P,j> in the expansion (XI-50). Qj is equal to the

8 are expansion coefficients. Pj is equal to the

coefficient of |Q,j> . Aj and ﬁj are found by Eqs. (XI-42) once

Pj and Qj are known. Knowing Aj, ﬁj and 1 , we have completely

solved the original equations, Eq. (¥I-38).
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The Stevenson-Moulton method is equivalent to solving Eq. (XT-45)
by using Rayleigh-Schrddinger non-degenerate perturbation theory and
(1) (0)

to be the perturbation on H . We

considering the term HS s

first seek the solution which corresponds to

lim ¢ = uio) H lim |u> = |P,0>

A+ 0 A=+ 0
since, in zeroth order, this sclution leads to one of the Rabi
approximate solutions. The other Rabi approximate solution is the

zeroth order solution to Eq. (XI-45) which is defined by:

lim p = ufo) ; lim |u> = |Q,0>'.
A=+ 0 A= 0
From the discussion of Chapter VII, we know that the higher
order corrections in the Rayleigh-Schrodinger non-degenerate
perturbation theory will contain ﬁerms of the form given by Eq.
{VII-8). For the Hamiltonian Héo) , the smallest différence

between zeroth order energles is +VR and when e is very nearly

unity,

+/R + +2u .

(1)

s

When € z 1 , all the matrix elements of H are of order of
magnitude o . Thus, some of the correction terms obtained by this

method may be of order unity~-the same order of magnitude of the
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zeroth order solutions. Thus, we do not expect the Stevenson-Moulton
technique to give a quickly converging series approximation to the

original problem.

Shirley's Approach: B =6 = 0

Our technique of solving (XI-28) by using Floquet Theory and
Fourier's Theorem to reduce the time~dependent problem to a
time-independent eigenvalue-eigenvector problem, has been taken from
Shirley's (1963,1965) work. Shirley reduces (XI-28) to the problem

of solving
Hpjp> = ujp>

in the IA,j> , [B,j> basis. 8Since he considers only the case of
B=68=0, HF would be defined by (V-2) in which both & and B
have been set equal to zero. For the case of e = 1 » Shirley takes
note of the fact that standard Rayleigh-Schridinger perturbation
theory may not be used to obtain quickly converging approximations.
To handle this case, Shirley uses a partitioning perturbation scheme
formulated by Salwen (1955). The Salwen.scheme~is one in which the

higher order perturbation equations are only approximately solved.

In the scheme we use, the higher order perturbation equations are
exactly solved. We, therefore, disagree with Shirley in the first

correction and in all higher corrections.
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Salwen's Perturbation Scheme

The Salwen perturbation scheme is formulated for solving the

problem

HF]u> = u|p> (X1-51)

where there 1s an almost (or exact)} degeneracy in zeroth order. Let

H,, have the expression

F
_ (0) (1)
HF = HF + AHF
0
where A 1s an ordering parameter. Further let Hé ) have the

(o3
]

orthonormal set of eigenfunctions, |j> » with eigenvalues u
(0) - (D)
Hp o3> = us (5>

For simplicity, denote the two kets which are almost (or exactly)
degenerate in zeroth order as [1> and |2> .

Write the solution to Eq. (XI-51) as:

lu> = <llu>|1> + <2|u>|2> + Z' (Cn<l|u>_+ Dn<2|p>)|n> (XI-52)
kol
where the prime on the summation is used to indicate that n = 1,2
is to be excluded from the summation and where Cn and Dn are

H-dependent constants. By substituting Eq. (XI-52) into (XI-51)
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and by subsequently multiplying the result first by <1| and then

by <2| we obtain the following two equations:

[<1]Hg|1> + E' Cn<l[HF|n> - nl<l|p>
(X1-53)

+ [<1|HF|2-) + E' Dn<1|H.F]n>]<2[u> = 0

[<2|Hg|1> + E‘ ¢_<2|Hg|n>}<1]u>
{¥XI-54)

+ [<2|HF|2>+§' D <2|Hp[n> - ul<2|w> = 0

In order that there be a solution to Egs. (XI-53) and (XI-54), the
determinant of the coefficient matrix must vanish. This means that
two eigenvalues of HF are found as eigenvalces to the following

2 x 2 matrix:

<1|n,|1> + P Cn<l|HF]n> <2|Hp|1> + }' ¢ <2|H;|n>
n n
{XI-55)

(<1|mg|2> + E' D <llHp|n> <2|Hp[2> + g' D_<2|Hp|n>

That the roots of Eq. (XI-55) correspond to the perturbed

eignvalues arising from states |l> and |2> may be confirmed by

noting that when X - 0 , the roots of Eq. (XI-55) are just ufo)

(0)

and ujp Of course, before finding the roots of Eq. (XI-55), we
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must first find the coefficients Cn and Dn . These are found by

first noting the equality:
<n|HF|u> = y<n]p> n#1,2. (XI-56)
Using the expansion of [u> given by Eq. (XI-52), we have

<lfu><nIHF|1> + <2|u><anF[2> + g'(cj<l|u> + Dj<2[u>)<n[HFfj>

= u(cn<1|u> + Dn<2]u>) n#1,2.

(XI-57)

Eqs. (XI-57) are satisfied if we choose the coefficients Cn and

Dn so that they obey:

-<n[Hp[1>

§u Cj(n,l-]_ﬁ"j} + (<n]HFln> - u)Cn

(XI-58)

§" Dj<n]HF|j> + (<n|HF|n> - u)Dn ~<n|HF|2>

where the double prime is used to mean that j=1,2,n is to be
excluded from the summation and where n # 1 or 2 .

In summary then, the Salwen formulation is first to solve Egs.
(¥I-58) for the coefficients C, and D, . These coefficients are
then used to form the 2 x 2 matrix given by Eq. (XI-55). The roots

of this matrix are two exact eigenvalues of (XI-51). The fly in the
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ointment is, of course, the fact that we must know beforehand that
which we seek: we must know an exact eigenvalue, p , before we can

solve for the Cn's and Dn's since Egs. (XI-58) depend on u .

Solving Salwen's Equations’

The formulation, 80 far, just changes the original problem from
one in which we have é known mat:ix {the matrix H ;n the !j>
basis) which will be difﬁicult or impossible to diagonalize to a mew
problem in which we must diagonalize an unknown 2 x 2 matrix.
Salwen, however, suggests two approaches in attempting to find the
elements of the 2 x 2 matrix. One is an iterative scheme and the
ofher is a perturbation scheme.

(a) The iterative scheme: The iterative scheme is simply to

first select an approximate value of pu . Use this approximate
value of p in solving Eq. (XI-58) for the coefficients Cj and

Dj . With these coefficients knqwn,.(XI—SS) can be evaluated and
then‘aiagonalized. Select the apﬁropriate.root of (XI-55) as the
new approximate value of 1y with which to again carry out another
iteratién; ‘Cﬁntinue tﬁis cycle until a value of p of sufficient
accuracy is found. Although this is an interesting scheme of
solution, we will not pursue it further here since Shirley does not
use:it and we are primarily dnterested in this report in comparing

Shirley's previous work to our present work.

(b) The perturbation scheme: The specific perturbation scheme

which Salwen and Shirley use is the following: Let 1w which appears

in Eqs. (XI-58) be given by either u%o) or u§°) . Then solve
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Eqs. (XI-58) perturbatively by expanding H, Cj and Dj in powers of
A . Use the perturbation approximations for Cj and Dj in
fdrming'the 2 x 2 matrix of Eq. (XI-55). The eigenvalues of the

resulting matrix are taken as approximate values of U o

Relationship of the Salwen-Shirley Perturbation Theory

to Partitioning Perturbation Thecry

Recall the basic equation of partitioning perturbation theory:

Eq. (X¥-9). Assume that we know ¥ exactly where

-

lim x = (|1>,]2>) = xq . - (X1-59)
A= 0" -

Two exact eigenvalues of HF[u> = ulu> are recovered as roots to

the following secular equation:
+ | | .
detlxg(HF -Wx]l = 0. (XI-60)

As the first step in explaining the Salwen-Shirley scheme write X

and

N

as.

(XI-61)

]
=
o
-+
M
i

X = Xot+tx1; E E

where ¥, has already been defined by Eq. (XI-59) and Eqg 1is, at

this point, arbitrary. X1 and E; are, therefore, correction terms -

-

which make the definitions in ({I~-61) valid.
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Using Eqs. (XI-61) in (X-4) we have:

Bpxo + Hpx1 = xofo * Xof1 + xifo *+ x1fa (X1-62)

The Certain-Hirschfelder scheme is to first take

]
u1() 0
Ep =
z 0
0 ué )

and to then perturbatively solve for ¥%; and W1 . The Salwen-

-~

Shirley scheme 1s equivalent to first approximating Eq. (XI-62)

by neglecting the term x3E; . Salwen and Shirley then let

(0)
” PR

where 1 dis the 2 x 2 unit matrix and u§0) is either one of the

two unperturbed almost {or exactly) degenerate eigenvalues of Héo)

The resulting equation is then perturbatively solved to find x, and

i txy

and, approximate eigenvalues are found by then finding the roots to

(XI-60). The important point te note is that the Salwen-Shirley

scheme (unlike the Certain-Hirschfelder scheme) will not yield exact

eigenvalues even 1f the perturbation theory is carried to infinite

order.
Demonstrating our analysis of the Salwen-Shirley perturbation
scheme in terms of the Certain-Hirschfelder theory is simple. Let

the exact X1 be given by:
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x1 = Q' e.].>0" 4., (XI-63)

~ A B E - A
J ]

where cj and dj are expansion coefficients and the prime means

that states [l1> and ]2> are to be excluded from the summations.

The eigenvalues of HF]u> = u[u> are found by use of Eq. (XI-60)

which leads us to seek thc eigenvalues of

<LlHp[1> + X‘ cj<1[HF|j> <LlHp|2> + I dj<l]HF]j>
] J (XI-64)
<2{Hg|1> + J" c_j<leFIj> <2lHp[2> + Z' dj<2[HFIj>
h| 1
We now show that the Salwen-Shirley scheme of finding the cj's and
dj's is equivalent to solving:
HpXo + Hpxy = XxgEg + xpE; + X1Ep (XI-65)

where ¥4 = ([1>,|2>) and Eg = u;o) I ,3=1o0r 2. Writing Eq.
(XI-65) out explicitly we have
0
(Hp - u§ ))(l1> + 1" e k) = (ED]1r + (Epagl2> (X1-66)
k el ~
=, (0 ) =
(Hp -~ u Y2 + d [k>) = (Epi12]1> + (E1)22]2> (XI~67)
k ~ X

Left-multiplying both Eq. (XI-66) and Eq. (XI-67) by <a| (n # 1,2)

we find that the cj's and dj's are determined by:
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1{" ck<anF|k> + [<nIHF|n> - u:§0) ]cn = —<n|HF| 1>
(X1-68)
1érr dkt’:n]H_F|k> + [<n|H_FIn> - uj(O)]dn = _<anFl2>

where n‘# 1,2 and the double prime indicates that states |L> ,
|2> and fn> are to be excluded from the summation.

Comparing Eqs. (XT-68) with Eqs. (XI-58) we see that if p in
Egs. (XI-58) is replaced by ugo) s cj is the same as Cj and dj

is the same as Dj and thus our description of the Salwen-Shirley

scheme in terms of the Certain-Hirschfelder partitioning is correct.

The Pegg—Series Technique: B =6 = 0

Pegg and Series* have developed techniques to handle the problem
of quantum mechanical spin systems in periodic classical fields.
Pegg (1973b) applies these techniques to a study of the two-level
system at its main resonance and at ite subharmonic resonances.
Here we discuss Pegg's application of the Pegg~Series technique to
the main resonance and we defer a discussion of his treatment of the
Subharmonic resonances until Chapter XII. Throughout this present
section we report on Pegg's (1973b) paper although we call the
technique the '"Pegg-Series' technique.

To.discuss the Pegg-Series technique, let us rewrite Eqs. (XI-28)

in matrix notation:

*
Pegg and Series (1970) and (1973a).
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ié = H é (XI~-69)
where
0 20c08T
I}:
- 2ccosT £

The two-by-two solution matrix A is given by

aj(t} as(1)

bi(t)  by(r)

1
]

where the solution pairs {aj;(t);b;(t)}} and {as(t);by (1)} form
linearly independent solutions to Eq. (XI-28).
An approach to solving Eq. (XI-69) is this. Let S be a

two-by-two time-dependent matrix and let A' be defined by

-

]
A
tip

The equation for A' is

s

(X1-70)

I
=
]
umi
X

A" = [§sl+sHs

where is defined by Eq. (XI-70) and where in deriving Eq. (XI-70)

L3¥==]]

we have made use of the identity:
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1f 8 is chosen so that ﬁ is not time-dependent, we may easily
and exactly solve Eq. (XI-70). For example, if E is a matrix of

constants, we may always find a similarity transformation such that

(XI-71)

¥ =)
@izl
18D
I
ne

where Q 1is a nomsingular two-by-two matrix of constants and A is
a two-by-two diagonal matrix with the eigenvalues of E along the
diagonal. 1If E is hermitian, Q can be chosen to be a unitary

matrix, The solution matrix A 1is recovered by back-transforming:

A = slge s K (XI-72)

where K is an arbitrary two-by-two matrix of constants in which
{in order not to get trivial sclutions) we require that det(g) £0 ,

The basic idea behind the Pegg-Series treatment is to choose §

-

- *
so that the time-dependent terms in H are small. Ignoring these

small terms should, therefore, give a good approximation to A .

* Pegg (1973b) formulates the problem in terms of spin operators. Our
matrix formulation is, of course, equivalent. In recent papers,
Ansbacher (1973a,b) also uses a matrix formulation. Ansbacher lets
B=26 =0 and he attempts to replace the Hamiltonian of our Eq. (I-1)
by an approximate Hamiltonian, Ha , which makes the Schradinger
Equation solvable. H_ , in general, contains adjustable parameters,

a

which Ansbacher chooses so that (H-Ha)2 is minimized.
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Example

Before describing and discussing the Pegg-Series choice of 5,
let us show how the Rabi Approximate solution can be derived using
this formalism. To obtain the Rabi Approximate solution, let S be

defined:

e-ir/2 0

e:LT/2

nen
]

(X1-73)
0

With this choice of S , the matrix ﬁ is Eq. (XI-70) becomes:

5{ a(l+e-2iT)

a(l+e21T) s~}{

wial
n

Approximate E by ignoring its time-dependent terms. Doing this we
are neglecting off-diagonal terms of order « . We now diagonalize

the approximated E-matrix to find

e+/R 0 coagé -singﬁ
A = }5 : 9 = g 6 (XI—74)
® 0 e~-vR. - sind  cos”

where R = (e~1)2 + 402 , cosf = (1-e)/VR and sing = 2a/VR
Letting K be the unit matrix, we use the Eq. (XI-74) approximations
tc A and Q in Eq. (XI-72) to recover an approximation to A

The result (aside from a normalization factor} in the same as the
Rabl Approximate aolutions* which we have already written in Eqs.

(XI-30) and (XI-31).

*
In making the comparison we must set & = 0 {n Egs. (XI-30) and (XI-31).
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The Pagg-Series Transformation

*
The Pegg-Series choice of § is written as:

s = 2y0Q (x1-75)
where
eiT/2 0 cos(GPIZ) sin(BP/Z)
Q = /2| 3 ¥ T
. 0 e = —sin(BPIZ) cos(BP/Z)
(XI-76)
elP(T)/Z 0
P = .
et 0 E"J.P(T)/Z
Gp is defined by
cos(Bp) - Letl) ; sin(8 ) = ~2o
Jﬁ; P /ﬁ;

where Rp = (e+1)2 + 402 . P{r) is a function of 7T and will be
left unspecified at this point so that we may derive general

expressions, Reading from right to left, we Interpret S in the

*
There 1s a typographical error in Pegg's 1973b paper. Pegg's

Equation (5) should read.
S(t) = exp{i J_(asinZet + (pHDutIR '(8) exp(-1 J ut)

Similar corrections must be made in Pegg's Equation (6). This

misprint has been confirmed by Pegg in a private communication with us.
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following manner. Q represents a transformation to a reference
frame which is rotating in the direction opposite to the Rabi-frame.
V diagonalizes the part of the transformed Hamiltonian which is
static in this new frame. P is chosen to make certain remaining
time~-dependent terms small.

With S chosen according to Eq. (XI-75), ﬁ becomes;

11 = asin(e)[1 + cosr] + esin?(s /2) - 2 Ygeos (s )
(E)lz = aeiP[e2iT cosz(ﬁp/Z) - e_ZiT sinz(BP/Z)]

) . {XI-76)
(E)zl = ae_lp[e-le cosz(GPIZ) - e21T sinz(GPIZ)]
(E)zz = P(;) + 5§cos(6p) + ecosz(GPIZ) - asin(ep)[l + cos2t]

The above expressions are rigorous. In applying the Pegg-Series

technique, Pegg obtains his approximation to E at the main
resonance by
(a) Letting
P(t) = asin(ep) sin2t - 21 (X1-77)

, *
(b) Fourier analyzing exp(*1iP(T)) according to:

F - +
o 2it Z 2iqT (XI-78)

exp[+iP(1)] Jq(usin&p) e

=

*
See Abramowitz and Stegun (1964), Eqs. 9.1.42 and 9.1.43.
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where Jq(asinep) in the integer order Bessel Function of order g

and argument asin(ep) .

(¢) Retaining only the static terms which are left in H
after steps (a) and (b).
Step (a) alone makes (E)ll and (E)zz gtatie:
@1 = Hle - /E;] +1
(X1-79)
(H)pp = 1/2[€+'/Y15~-p-]--l

With steps (a) and (b), the static off-diagonal terms are both equal

and are both given by:
a[cosz(ep/2) Jo(asinep) - sinz(BPIZ) Jz(asinﬂp)] (X1-80)

Recalling that e+l = 2 at the main resonance and recalling that
¢ 1s assumed to be much less than unity, we find that the largest

ignored dynamic terms are of order 0(y3) .
With H approximated in this manner, we obtain the corresponding

approximations to A and Q . We find the Pegg-Series approximation

-

to the solution matrix A to be of the Floquet form. The eigenvalues

-

of the approximated g matrix correspond to the Floquet characteristic

exponents. Since these eignvalues were obtained by neglecting

off-diagonal terms of order O(a3) , they are correct through U(as) .

The corresponding eigenvectors (correct through O(a?) ) are involved

in the expressions for the "¢~parts'" of the Floquet Normal Modes.
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A disadvantage to the Pegg-Series technique is that the
transformation are ad hoc and there is no prescription for obtaining
solutions of arbitrary accuracy. Furthermore, the Pegg-Series

technique is not applicable when B does not vanish,

The relationship of the Pegg—Series technique to partitioning

perturbation theory.

Relating the matrix formulation outlined above to the
partitioning theory outlined in Chapter X is straightforward. Let

A be the Floquet solutions:

4 = oy & T (XT-81)
where
)
¢?1 ¢a2 M1 0
o = o -
g1 Pp2 0w
The uj's (j = 1,2) are the characteristic exponents and the ¢ij's

are the pericdic parts of the Floquet solutions. Using Eq. {XI-81)
in Eq. (XI-69) we find after first left multiplying the result by
exp[igFT] and then right multiplying the result by 9;1 that

= ri3=1 -1 -
i = Uit + 7 ) a-62)

e
4
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By comparing Eq. (XI-82) with Eq. (XI-70) we see that a
transformation matrix which makes ﬁ in Eq. (XI-70) both static

and diagonal is the choice:

From Eq. (III-19)}, det(gF) is nonvanishing for all wvalues of T

1

and thus & exists for all T . Note that if we make the choice

=F

1 (X1-83)

where ¢ 1s a nonsingular two-by-two square matrix of constants,

~

the matrix E in Eq. (XI-70) becomes

il
i
0we
ue
EXp!

which is clearly a (in genefal, nondiagonal) constant matrix. The
transformation matrix given by (XI-83) contains ¢ . The matrix ¢
merely linearly combines (or scrambles) the elements of 2;1 . Since
the partitioning theory is equivalent to finding linear combinations

of the ¢-parts of the Floquet solutions, the partitioning theory is a

way of systematically finding a matrix § which makes E static.

Pegg's method differs from the partitioning theory in that his
transformations are ad hoc and in that he gives no method of

syatematically finding § to arbitrary accuracy.
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The Silverman and Pipkin Technique: B = 0; § # 0,

Silverman and Pipkin (1972) have studied the two-level system
at its main resonance allowing for decay. They use the matrix
formulated which we have just outlined in describing the Pegg-Series
technique. Since they consider decay, let € in Eq. (XI-69) be
replaced by (e-if)

Their choice of § is the same as Pegg's choice (see Eq., (XI-75))
except:

{a) P{t)y = 27

(b) 1In the matrix V replace ep by ©_ where

:
1]

cosf = E-isHl H sint = :EE
5 YR VR
5 S

R, = (e-i86+1)2 + 402

Note that because of the inclusion of nonvanishing & , the S-matrix
is no longer hermitian., Silverman and Pipkin use this transformation
to obtain E . E is then approximated by retaining only static

- *
terms, This procedure gives an approximated H-matrix of the form:

*

Silverman and Pipkin's Eq. (35) 1s wrong. The off-diagonal elements
in their M, matrix should be divided by (1 + xi) . The algebraic
results following from (35) are therefore erroneous. Professor Pipkin

has confirmed these obgervations in a private communication with us.
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H1y) = ¥Hle-18 - fli] -1; (1322) = Yle-is + /E{;] +1
) (X1-84)
({1 = (@2 = -osin®(e_/2)

In obtaining this approximétion to E , they neglect diagonal terms
of magnitude 0O(aZ) and of periodicity 7 . They neglect off-
diagonal terms of magnitude 0(a) and of periodicity (w/2) .

In back-transforming to obtain é y thelr pfocedure yields
Floquet solitions correct through 0O(a) in the characteristic
exponents and correct through 0(a9) in the periodic parts of the
Floquet sclutions.

Like the Pegg-Series technique, the Silverman-~Pipkin technique

lacks ease of extension to obtain results of arbitrary accuracy.

Winter's Technique: B # 0, § = 0.

Winter (1959) has studied the main as well as subharmonic
resonances of two-level system. He has considered the case of
nonvanishing B . He does not, however, allow for nonvanishing
values of & .

Although he does not explicitly mention the Floquet theory, he
derives solutions of the Floquet form. He uses a perturbation theory
which, although outwardly &ifferent in its.forﬁal development, 1s
equivalent to the Certain—Hirschfeldér theory. Since he is primarily
concerned with the subharmonic resonances, we defer a more complete

discussion of Winter's work until the end of Chapter XII.
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The Case of g # Q0 and & # 0.

We have found ne previcus work which considers both nonvanishing
8 and nonvanishing ¢ . In Part I of this section, however, we have
given a method of solving for this general case to any desired degree

of accuracy.
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XII. PARTITIONING PERTURRATION THEORY APPLIED TO THE SUB-HARMONIC

RESONANCES

Introduction

This chapter is split’'into two parts. In Part I we show that’
when ¢ ® n, (where n_ is some integer greater than unity), the
sub~harmonic resonances are treated either by the Technique T7,
which we shall introduce here, or by Technique Tl which has already
been discussed in Chapter VIII. Which technique to use 1s determined
by the wvalues of n_, B and N , where, throughout this chapter, we

define N to be the order of field stremgth through which the

"¢—parts'" of the Floguet solutions are correct. Figure (XII-A) is

a flow chart which summarizes when to use Technique T7 and when to
use Technique Tl depending upon the wvalues of N, nr_and g .

In the second part of this chapter we compare our treatment of
the sub-harmonic resonances to the work of Shirley (1963,1965) and
Winter (1959). We also discuss_Pegg's (1973b) work in which Pegg

uses the Pegg-Series technique to treat the sub-harmonic resonances.

Part I: Solutions for .a Sub-Harmonic Resonance

Technique T7 is just the partitioning perturbation theory in

which we define

?E(O) = (|A’0>s 'Bs"nr:’) (XII-1)
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%
Technique T7 therefore consists of the following steps:

Steps to follow in using Technique T7.

Step (1). Let x(O) = ([A,0>,]B,-nr>) because, by hypothesis,

the states |A,j> and |B,j~nr> are almost degenerate with respect

to Héo)

Since the final time-dependent results are invariant to
the choice of j , for the sake of simplicity choose § =0 ,

Step (2). Solve Eq. (X-9) by using perturbation theory after
I-IF . K and E have been expanded in powers of the field strength.
The first three perturbation equations have already been expligitly
written out in Eqs. (X-17), (X-18) and (X-19). Furthermore, it is

convenient to use intermediate normalization in solving the

perturbation equations:
<k, j lxén)> = 0 (XI1-2)

where n>0; L =ao0rb; (k,j) = (4,0 or (B,-nr)

Step (3). Form the secular equation, Eq. (X-23). The elements
of this secular equation are defined by Eq. (X-13a).

Step (4). Diagonalize Eq. (¥-23). The eigenvalues correspond
to the Floquet characteristic exponents and they are correct through

(2N+1)-th order in the field strength. By using Eqs. (X-24), (V-7)

*
The partitioning perturbation theory is fully discussed in Chapter
X. An example of its application to the main resonance has been

given in Chapter XI.
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and (V-8), the eigenvectors associated with each root are used to
find the Fourier coefficients correct through N¥N-th order in the

field strength.

Techniques Tl and T7 applied to the sub-harmonic resonances.

Two different techniques Tl and T7 are used in treating the
sub-harmonic resonances. This is so because when partitioning
perturbation is applied to the sub-harmonic resonances, we are led
to a partitioning secular equation (Eq. (X-23)) in which off-diagonal
elements vanish for certain values of R, o and B . When the
off-diagonal elements of Eg. (X-23) vanish, the partitioning
solutions are equivalent to the non-degenerate Rayleigh-Schrodinger
results and therefore Tl and T7 differ only in normalizatiom.

Figure (XII-A) diagrammatically shows when te use T1 and when
to use T7 depending on the values of B, N and n, . The spirit of
Figure (XII-A) is this. Suppose that N, n_ and g are such that
the application of partitioning theory leads to vanishing off-diagonal
elements. We have therefore used a new technique (T7) to obtain
results equivalent to results already obtained by an old technique
(Tl}. So why .not save time and energy and figure out when this is
going to occur beforehand? TFigure (XII-A) does just this,

We arrive at Figure (XII-A) by detailed consideration of the
Ea(N)'E and Eb(N)'s where N = 0,1,2,...etc. Consider first

N=20.
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START

DOES YES IS YES
g = 07 | nr avarn?

NO NO

N

I8 USE
201 > n ? T1

0

A\
-

YES

/

USE
I7

FIGURE (XII-A). Best technique to use to obtain a(t) and b(r)

correct through N-th order in the field strength

-

vhen ¢ = n, ( n_ any integer greater than zero)

and @, B and § are all much less than unity.
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N=20
0 (0) _ =
If N= 0, then xi ) = xa(O) = |A,0> and Xy, = xb(O) =
|B,—nr> . HF|xa(0)> therefore has components in
[|A,0>,|B,£1>] (X11-3)

By this we mean that <k,j|HF|xa(O)> vanishes unless (k,j) = (A,0)
or (B,*1)

HF]xb(0)> has components in
[IB,—nr>,]A,-nri1>,B|B,—nrtl>] (XII-4)

By this we mean that <k,j[HF|xb(0)> vanishes unless (k,j) =
(B,—nr),(A,—nril) or (B,—nril) . Furthermore, if any of the kets
which appear in the brackets are multiplied by g , then there are
no components of those kets in HF|xb(0)> when the parameter B
vanlshes. Thus, if B =0 , HFbe(0)> has no components in
|B,—nril> . This notation and phaseology 1s used throughout the
present discussion.

| From the definition of x(0) and from the expressions (XII-3}
and (XII-4), we see that when N = 0 , Eq. (X-23) has off-diagoenal

elements only if n_ = 1 . This is true regardless of the value of B .

N=1

If N= 1, from the first order partitioning perturbation

equations (Eq. (X-18)) and from the normalization



a1l = il = o

n>1l; (kod) ='(A,O) or (B,-nr)
it 1s clear than xa(l) has components din:
[{A,0>,[B,%1>]
xb(l) has components in:
[IB,—nr>,]A,-nril>,B|B,—nril>]
Han(l) has components in:
[|a,0>,]B,t1>, |A,£2>,8|B,0>,8|B,+2>]

and HFxb(l) has components in:

12-6

(X11-5)

(XI1-6)

(X1I-7)

Knowing the components of xj(l) and Hij(l) (j = a,b) , it is

easy to see that {f N =1 in Eqs. (¥X-23), Eq. (¥-23) will have

non-vanighing off-diagonal elements
(a) 1if B # 0, only when n_ <3.

lor 3.

(b) 41f B =0, only when n,
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Forming the partitioning secular equation with N = 2 , from
considerations exactly similar to those in the above discussions,
we find non-vanishing off-diagonal .elements

(a) If B # 0 , only when n, < 5

(b) If B =0 , only when n_ = 1,3 0r 5.

N <2

From consideration of the cases of N < 2 as well as the
cases N = 0,1,2 , we find the following behavior:

The off-diagonal elements of Eq. (X~23) are non-vanishing only

under the following two sets of conditions:

(a) if B # 0 , only when n. 2 (28+1)

(b) 4if B =0 , only when n.

|~

(2N+1) and o, 1s odd.
The consequences of these two sets of conditions are summarized by

Figure (XII—A)°

The Technique Tl convergence requirements if 8 = 0 ..

The Technique Tl convergence requirements were given in Egs.

(VIII-13). It was stipulated that
- sl > G,B

where Kmin 1s the integer (including zero) which makes IKmin*El

as small as possible. When g = 0 , however, T7 is equivalent to
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Tl.. This means that for B = 0 , denominators of the form,
' - 1 -
|Kmin e| , where Kl;, 1is an even (non-zero) integer, never occur.
If B =0 , the non-degenerate Rayleigh—SchrBdinger perturbation
series (the Tl solutione) will quickly converge if

<< 1 g g|] >> o ; 6 arbitrary. K;in is the odd

L
min
integer (or zero) which makes [K;in—el as small as possible.

(XI1-9)

As Winter (1959) has shown, there is a physical manifestation
of the fact that when B =0 and n, is even the Tl solutions
are the appropriate solutions. If B =0, a two-level system shows
resonance absorption peaks only at values of e equal (or almost
equal) to an odd integer. If, on the other hand, B # 0 , a two-
level system shows resonance absorption peaks at all integer values
of & . Margerie and Brossel (1955) were the‘first investigators to
experimentally observe the sub-harmonic resonances. They observed
radio frequency transitions in sodium vapor corresponding to

€=1,2,3 and 4 .

Fart II: Other Treatments of the Two-lLevel System's Sub-Harmonic

Resonances.

Shirley's Approach: B =8 =0

The approach we have just used to treat the sub-harmonic

resonances is basically Shirley's (1963,1965) technique extended to
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account for non-vanishing values of B and d . The only difference
between our approach and Shirley's approach is that we solve the
perturbation equations exactly.

We have already discussed Shirley's perturbation theory in
Chapter XI. All the results, discussion, cenclusions, etc.‘apply

here.

The Pegg-Series Technique: B =46 =0

In his (1973b) paper, Pegg uses the Pegg~Series technique to
obtain soclutions for the two-~level System's sub-harmonic resonances.
Since we have already discussed the Pegg-Series technique fully in
Chapter XI, we assume the reader's familiarity with the ideas and
notation contained in that discussion.

In considering e = n ( n here can be any integer greater
than zero), Pegg (1973b) suggests that the transformation § be
defined just as we defined it in Eq. (XI-75) except that, for the

general n. o, P(t) be defined by
P(t)} = usin(ep)sinZT - 2nr1 (X11-10)
where ep has already been defined in the discussion following Eq.

(XI-75). Clearly, for n_ = 1 , Eq. (XII-10) reduces to Eq. (XI-77).

Just as we did in Chapter XI, we form the matrix

133 ¢]]
P
[13==]]
-
fo
m

been defined by Eq. (XI-70)). After Fourler analyzing exp[:iP{t}]

according to
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- <0 .
e+21nrr z +2iqr (XII-11)

exp[+iP(t)] Jq(asinap) e

q=—-m
where the functions Jq(asinﬂp) have already been defined by Eq.

(XI-78), we retain only the static terms of . No dynamie terms

711

must be ignored in the diagonal part of H and the diagonal part of

=

H 1is given by

(E)ll = &ﬁ[a - /E;] + n
(XII—lZ)
(EI)?_?_ = Yle + /ﬁ;] - n_

For the case of n = 1l , Eqs. (XII-12) reduce to Egs. (XI-79).

The static off-diagonal terms of ﬁ are both equal and are

~

given by:
a[cosz(eplz)Jnr_l (asinep) - sinz(ep/Z)Jnr+l (usinep)] (X11-13)

For n_ = 1, Eq. (XII-13) reduces to Eq. (XI-80). Just as before,
the Pegg-Serles prescription is to approximate E by its static part.
This approximate E leads to approximate expressions for the Floquet
Normal Mode solutions.

When n_ # 1 , however, we always neglect a dynamic term

proportional to

acosz(Bp/2)J0 (asinep) (X11-~14)
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This term is of order ((z) and the Pegg-Series prescription for

the sub-harmonic resonances leads to Floquet solutions correct
through 0O(a) in the characteristic exponents and correct only
through zeroth order in the '"¢-parts" of the Floquet Normal Modes.
Because of its low formal accuracy and because of its ad hoc
nature, we do not recommend using the Pegg~Series technigue in

treating the sub-bharmonic resonances.

Winter's Treatment: R # 0 and § = 0

Winter (1959) considers the sub-harmonic resonances with 8
non-vanishing and & vanishing. Although his end results are just
our results, his formulation of the steps leading to these equivalent
results is quite different from our formulation. The differences
occur both in the transformation of the dynamic prcblem into a static
problem and in the solution of the static problem in the regime of

near (or exact) degeneracies.

Transformation to a Static Problem

Winter considers equations equivalent to Eqs. (II-4) and (II-5)

under the stipulation that & = 0 :

~2iccosThb

]
]

(XII-15)

s
1]

-ieb - 2iBcosthb -~ Ziacosta

Rather than directly using Flogquet's Theorem, he makes the ansatz

that a(t) and b(r) may be written as:
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I a (0 e (XII-16)

n=-DO

]

a{t)

o

I b (v 107 (XII-17)

n=—ca

b{t)

where the an(r)'s and bn(r)'s are functions not constants. First

letting

-iT

cosT = %&(eiT +e )
and then substituting (XII-16) and (XII-17) into Egqs. (XII-15),
Winter matches terms multiplying each and every eIt to obtain

the following equations for the functilons an(T) and bn(T)

a,(x) = -ina (v) - a[b__ (1) +b_ (0)]
(X1I-18)

ba(t) = ~L(etm)b (1) - 48b 1 (x) + b, (D] ~tala (1) +a_, (1]

where n ranges from -= to = ,
Notice that Eqs. (XII-18) are an infinite set of linear,
homogeneous coupled differential equations with constant coefficients.

They have a solution of the form

-ipt
e P

A

a, (1) 0

(XI1-19)

n

-iut
bn(t) e Bn
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"where u , the An's and Bn's are constants. Using Eqs. (XII-19)
in (XII-18) we arrive at exactly the same matrix eigenvalue-
eigenvector equation which we have already written as Eq. (ITI-35).
Thus, the pu in Eq. (XII-19) corresponds to a Floquet characteristic
exponent and the An's and Bn's in Eq. (XII-19) are exactly the
Fourier Expansion coefficients of Eqs. (III-34). Therefore,

although Winter never invokes Floquet's Theoreﬁ or Fourier's Theorem,
he implicitly uses them to recast the time—dependent problem into the
static eigenvalue-eigenvector problem which we have already given by

Eq. (III-35).

The Winter-Heitler Perturbation Theory

Winter recognlzes that resonances occur when ¢ = n and that
resonances correspond to near (or exact) degeneracles in the M
matrix (see Eq. (III~36) for M's definition). To handle the
problem of near degeneracies, Winter extends a formalism due to
Heitler.* At first glance, the Winter-Heitler Perturbation Theory
appears different than the Certain-Hirschfelder partitioning
perturbation theory. We show, however, that the two are equivalent
if "Certain-full-normalization" is used in the partitioning theory.

In explaining the Winter-Heitler theory, it is convenient to
replace the (B,j)~th row of g by its (B,j—nr)—th row
(] = —2,,,.,%) to generate a new matrix g' . The rows and columms

of M' are still ordered according to

*
Heitler (1960), Chapter 4, Section 14,
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esoBA1,B1,40,Bp,A_1,B_15:.0 (X11~20)

and, by definition, we therefore have,

M' . = (M <

(x )A,J;k,ﬂ (z)A,];k,L

M’ . = (M

(x )B,J;k,ﬂ (:)B,j‘nr§ks£

where k= A or B and £ = -=,...,». M' has been defined so that

the almost degenerate pairs
j and j 4+ € - n,

occur adjacent to each other along the diagonal of M' ., Further
define the column vector C' in terms of the vector C of Eq.

(III-35). The elements of g' are ordered according to (XII-20)

and therefore:

o T B, (XI1-21)
€y = (©,

where J = ~=,...,« . It is evident that the problem (M~uI)C = 0

is exactly equivalent to the problem

(M'-pI)g' = 0 (X11-22)
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It is this latter problem to which the Winter-Heitler perturbation
theory is applied.

g' still has almost {or exact) degeneracies along its diagonal:

M' ; o= (M ;

(x )A,J;A,J (z )B,J;B,j

To overcome the difficulties which these near (or exact) degeneracies
cause in the perturbation solution of Eg. (XII-22), a unitary

transformation, § , is sought which has the property

~

Sf @' S = K3 §+ S = 1I (X11~-23)

where I 1is the infinite unit matrix and K 1is an infinite square
matrix. The rows and columns of K are ordered according to
(XII-20) and K 1is defined so that all its elements vanish except

its diagonal elements and the elements:

®ai1 0 ®s,154,3

With S8 and K defined in this manner, Eq. (XII-22) becomes:
L LY L
(8 M' S8 - uD)(S C') = (K-wI)(§ C') = 0 (XII-24)

Since K 1s block diagonal with 2 * 2 matrices along its diagonal,

solving Eq. (XII-24). 1s a simple task. The difficult task is to find
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§ and K . Winter suggests that they be found by a field-strength

-~

perturbation solution to

(XI1-25)

{34
-
o
1
[225]
e

We show that the Winter-Heitler procedure is equivalent to the
Certain-Hirschfelder treatment by noting that the § matrix is
merely a matrix containing "scrambled" eigenvectors of M' . Since
the Certain-Hirschfelder treatment also seeks scrambled eigenvectors
of M' , the two treatments are equivalent if Certain-full-
normalization* is required in the Certain-Hirschfelder treatment.

We demonstrate this assertion by first denoting the exact

eigenvalues and eigenvectors of M' by:

v ot = 1 ~
Y oSe T oM S (XI1-26)
where k= A or B and % = -«,,,., . The complete solution to
Eq. (XII-22) is written as
M'C' = C'u (X11-27)
s e > E]

By this we mean that when, H,

F is Hermitian (i.e., 6 =0 ), we

choose ¢ of our Eq. (X-7) to be unitary., See Certain and

Hirschfelder's (1970a) paper for more details.
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where g' and u are infinite square matrices, and, the rows and
columns of both are ordered according to (XII-20). The <{(k,%)-th
column of g' contains the solution vector gé,l and U is
diagonal and

Wi ek,e = Moo

where k =Aor B and & = -w»,..,.,» . Since C' contains the

eigenvectors or a real, symmetric matrix,

where I is the infinite unit matrix.

Define an infinite set of arbitrary 2 x 2 unitary matrices,
v(j) where j = -»,...,2 . Further define an infinite square
matrix V the rows and columns of which are ordered according to

(XII-20). V 4s block diagonal having the matrices v(3}) along its

diagonal. Therefore, all elements of V are zero except:

Pagsag = WO
Dy gi,q = QD) e
)

=" B,134,] - (g(j))zl

)

Pagimg T W
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We now assert that S is simply given by

1N
1

o]

1R

(XII-29)

S 1is unitary and it is composed of "scrambled" (or linearly

combined) eigenvectors of M' . With § defined by Eq. (XII-29),

we have:

S+ M'S = Vﬂi.(C')-]~ M! g' v = V+ vV (XII-30)

=

From the definitions of U and V it is clear that YT p V. may
be identified with K . Therefore, the Winter-Heitler and Certain-

Hirschfelder treatments are equivalent as long as Certain—-full-

normalization is used 1n the latter.
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XITT. . TECHNI QUE T8 THE fl[EJ—E FPANSION  OF T OF THE QUOTIE QUATIONS
APPLIED TO e >> 1 AND (2a). (28) AND 6 ALL MUCH LESS THAN ¢ _
Introduction

In this section we present perturbation.'solutions of Egs. (1I-4)

and (II-5) which are useful for the following ranges of the parameters:
€ >> 1 and (2a), (2B) and § are 211 much less than e .

In Technique T8 we do not directly deal with Egs. (II-4) and
- (I1-5). Rather we solve the equation for b(f)/a(f)_ to find one of
the Floquet Modes ac a power séries in inveése powers of ¢ . We
then solve the equation for a(T)/b(Ti to find the other Floquet 7
Mode as a power series in inverse powers of e . We believe that
this is a new way of obtaining solutions for the two-state time-
dependent problem.

There are two solutions for b(r)/a(t) as a series in powers
of (1/e) . One of these series has terms in (1/e)™ where

= 1,2,3,... and correspouds to one of the Floquet Modes. .The

other power series has terms with n = -1,0,1,... and (although it
corresponds to the other Floquet Normal Mode) it is not usaful fér

us since many of the individual terms become infinite for particular
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values of T . Similarly, there are two series in powers of (1/g)
for af(t)/b(r) . The series with n = 1,2,3,... corresponds to
the Second Floquet Mode. Again, the solution with n = -1,0,1,...
is not useful.

Knowing an asymptotically convergent series for one of the
Floquet solutions to b(t)/a(Tr) and an asymptotically convergent
series for the inverse of the othér Floquet solution to b(t)/a(T) ,
we construct approximations to the two linearly independent Floquet
solutions of Eqs. (II-4) and (II-5). We may linearly combine
these latter solutions to obtain a (I/e) expansion of a solution to
Egs. (II-4) and (II-5) obeying arbitrary initial conditioms.

Although the equatioms for b(r)/a(tr) and a(t)/b(1) appear
to be singular perturbations in the parameter (1/e) , when & = 0
their solutions do not approach an "outer" solution as T becomes
large. This anomalous behavior and also the convergence of the

series is discussed at the end of this chapter.

Statement of Quotient Equations

a(r) = eel(r); b(t) = ¢1(r)eel(T) (XI1I-1)

From the definitions of 6, and ¢; in (XIII-1), we see that
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@1(t) = b(r)/a(r) .
Substituting (XITI-1): into equatiens (II-4)- and (II-5), we obtain
8y = -2iacost 3, (XI1I-2)
and
z él = &1 - i ¢y + 28 cost @+ gg-COST -2 COST(®1)2 (XII1-3)
£ £ € £ €
From Eq. (XIII-2) it follows that if ¢, is known, 6p may be
found by simple quadrature. Eq. (XIII-3) has already appeared in
Section VIII in comnection with Techniques T3 and T4.
Similarly, if we define the functions 6, and &, by:
8
at) = ds(1)e 2(1) i b(r) = eez(T) ¥ (X111-4)
then the differential equations for 6, and ¢; are:

6, = -i(c - 18) - 2iBcost - 2iacosT O, (XI11-5)

and
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i 2
¢y = 3§-¢2 +-%§ cosT ¢ - 1? cosT + %? cosT(d,)?

M fH-
=2
Ny
It

(XI1I-6)

Once Eq. (XIII-6) is solved for ¢, , 6, is found by a simple
integration.

We use Egs. (XIII-2) and (XIII-3) to find an approximation to
one of the Floquet Normal Modes. We use Eqs. (XIII-S5) and (XI11-6)
to find an approximation to the other linearly independent Floquet

solution.

The (1/e)-Solution of Equations (XIII-3) and (X111-6)

If }E. (8/€), (2B8/¢) and (20/e) are all much smaller than unity,
then every term in (XIII-3) is a perturbation on the term (#1)
Such a perturbation is called a "singular perturbation" since the

highest order derivative term is included in the perturbation terms.
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%
Let ¢; be expanded according to:

oo

8 = I /et (XI1I-7)
n=q
From the indicial equation cbtained by substituting (XIII-7) into
Eq. (XIII-3), there are two solutions with finite values of q :

one with q = -1 and another with g = 1. As mentioned previously,

Defining
2 = g — 1§ + 2BcosT
and rewriting Eq. (XIIT-3) as

b, = é 51 - %? cost + %%-COST(Ql)z
it 1s tempting to seek approximations to the solutioms for 51 as
power series expansions in (1/R) . This aﬁproach is not recommended
because it has two disadvantages:
(1) The results for {a(t);b(r)} are not of the Floquet
functional form.
(2) The radius of asymptotié convergence is smaller than that

of the (1/e)-expansions.
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we consider the case where ¢q =1 and disregard the sclution with
q = -1 since this latter solution contains terms which become
infinite at certaln values of =<

The general n-th order term for the q = 1 solution is:

n-1
+ (16 ~ 26cosr)¢§n_l) + 2acosT[-84) + Z @%j)ng-l-j)]

3=0

NOINISFICEY

(XIT1-8)

where n > 1 and the "delta" with subscripts is the Kr¥necker delta.
From expressions (XIII-8) we see that ¢§n) is determined by the
(i), s (n)
®;”"'s where n > j . Furthermore, the equation for ¢; is not
a differential equation and we therefore have no flexibility in choosing

boundary conditions.

The first few orders of 2] are:

¢§1) = =2pcosT
(XI11-9)
@52) = 2iasint ~ 2a(1i8 - 2BcosT)cosT

Higher order corrections are easily obtained by using Eq. (XIII-8).
We obtain 6, by substituting the results of the (1/e)-expansion
of ©; into (XIII-2). Choosing the arbitrary constant of

integration (which is equivalent to choosing the normalization), we

obtain:
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2 2
6y = 1 %§{2T + sin(2Tt)] + %E—Zsinzr =28t - 8sin(21) + ...
- g%g sin(3T1) ~ 6iBsint

We recover expressions for the functions a(t) and b(r) by
using (XIII-1l). Since ®) contains only periodic terms and since
01 contains periodic terms and terms linear in t , when we assemble
the expressions for af(t) and b(1) , we find that we have obtained

a Floquet Normal Mode as a power series in (1/e) . The explicit

expression for this Floquet particular solution correct through

second order in (1/g) is:

First Mode:

-iuyT
ap = e "7 g,
(XI11-10)
-1
by = e M7 ¢
where
_ 202 21a2§
e R
2 2 5
$q1 = exp[lg— sin(2t) + %E{ZSinzr - §sin(21) - g:—gﬁ-sin(_'ir) - 6ipsint]
+ ...]

¢p1 = dail- %g'CDST + %%[i gint - (ié - 2BcosT)cost] + ,..]
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In an exactly similar manner, we find that -enother Floguet
particular solution is found by again assuming a (1/e)-expansion
for 9, :

o
0, = T (/)" o™ (XITI-11)
n=q

Substitution of the expansion (XIII-11) into Eq. (XI11-6)
vields an indicial equation which admits of a solution for two
finite values of q : q=-land q=1. We again disregard the
solution with q = -1 since we have already obtained its inverse:
the solution of ¢, with q =1 . We focus on the solutionm to
®2 with q =1 . (The inverse of this solution was the solution
to ¢; which we disregarded.) The general n-th order term of the

q = 1 solution is:

n-1 . R
o8 = 138D 4 (45 - 2gcosmye{® D) 4 2acostliy - ) edd) ¢{ml71)y
31

(X1I1-12)

where n > 1 . The various ¢§“)'

§ are easily found by use of
(XIT1-12). The approximation to ¢, which is‘geﬁerated in this
manner is substituted into Ed. (XIII-5) to obtain the function 85
The results for ¢, and 8, are used in Eq. (XIII-4) to obtain

solutions for a(¢) and b(r) . This procedure generates another
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(1/e) solution of the Floquet Form. As we will demonstrate, it is
linearly independent of the solution given by (XIII-10). This

second Floquet Normal Mode explicitly is:

Second Mode:

-1
as = e UzT ¢a2
e RTPE 4
by = e 27 gy,
= - 45+ 2, 208
H2 £ I
- 2o 2q .
baz = ¢b2[j; cost + 22{1 sint’'+ cost(dd ~ 2Bcost)] + ...]
. ia? . a? 2 .
¢p2 = exp[-21BsinT - sin(21) + EE 2sin¢t + &sin(21) -1 + ... ]
2ig .
+-—§~ 8in{31) + 6iBsinT

(XITII-13)

Note that we really did not have to do a separate perturbation
calculation to derive the second Floquet Normal Mode. Knowing the
particular solution {aj;(t),bj{1}} , we could have obtained the other,
linearly independent Floquet particular solution by using (III~22).

In any case, (ITII-22) may be used to check the algebra used in |

deriving (XIII-10) and (XIII-13).
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The Linear Independence of the Two (1/e)-Solutions

Using the results of Eqs. (XIII-10) and (XIII-13), the determinant

D{t) = ay{t)by(r) - ax(1)bi(7)
is given by,
T 4a? 2 ¢ o
D(t) = |1 - —7 cos®t exp|-i(e - 18)t - 2igeint
2 2
- §E§ coszr(ié - 2Bcost) + ... + EEE sin?t + ...
£ £

Thus, D(1) cannot vanish for sufficiently small values of 1/e ,
(2a/e), (28/c) and (8/¢)

Since D(r) # 0 , the two solutions which we have obtained by
the (1/¢)-expansions correspond to linearly independent Floquet

Normal Modes.

Convergence of the (1/e)-Expansions

To discuss the convergence of the (1/e)-expansions, we look at

the general expression for the various Q;n)'s :
o™ 3 20)® (28)° &° £™ (cost,sint)  (XITI-14)
3 el abce !
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f(n)

abe is a polynomial in cost and sinTt and it is therefore

bounded. a, b and ¢ are positive integers (or zero) such that
a+b+c < n.

If (1/g), (8/g), (2&a/e) and (2R/e) are all less than unity, we

expect that the coefficients-

1 1 ]
eu? 28)? §°
E:n-f-l

from the  (ntl)-th order are smaller than the .coefficients

o 28)° ¢
=

from the n-th order. .There is no way of being sure, however, that

énfl) -1s always smaller than ¢§n) for all Tt and all n . We

therefore expect the series to converge asymptotically. This is

@

the general behavior of singular perturbation solutiomns.
We form Floquet solutions for a(r) and b(r) from ¢j and
ej (j = 1,2) . The funection &j

in the Fleoquet solutions and we must therefore look at its convergence.

appears as an exponentiated function

Consider Bj (4 = 1,2) . From Eqs. (XIII-2) and (XIII~5) we

write the expression for. ej as:.
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ej = —i[(s - 1i8)T + 2Bsinr]652 - 2ia [ cosT ¢j dr (XITII-15)
where j.= 1,2 and 3dj; 1s the Kronecker delta. The result of
carrying out the integration oan the right-hand side of Eq. (XIIX-15)
is to obtain a function containing only terms linear in 1t and
periodic terms. These terms will involve products of (1/e), (8/¢e),
(28/€) and (2a/e) . If the latter terms are all much less than unity,
thg series expression for the result of the integration is
asymptoticaily converging. Multiplication of an asymptotically
converging seriés by a constant, 2o , does not affect its convergenca,
We therefore conclude thét the (l/e¢)-expansions for Bj will
asymptotically converge as long as (1l/e), (2afe), (2B/e) and (8/¢)
are all much smaller than unity.

We summarize the present discussion by saying: The (1/e)-

expansions of the Floquet Normal Modes given by Egs. (XIII-10) and

{XITI-13) will asymptotically converge if:

(1/e), (5/5), (28/¢) and (2a/e) are all much less than unity,

Discussion of (1/ec)-Expansions

As we pointed out in our statement of the quotient equaﬁ&ons,
the problem of finding solutions to the linear, homogeneous, first
order equations, Eqs. (II-4) and (1I-5) may be reduced tgo the
problem of solving one, noniinear, first order equation: either_

Eq. (XIII-3) or Eq. (XIII-6). The equations for @i (i = 1,2) are
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generalized Riccati equations.* Since both equations are first order,
the specification of Qj requires one arbitrary constant of
integration.

Consider &; . From Floquet's Theorem we write the general

solution to Eq. (XIII-3) as:+

-iuqT iy, |
b(1) Cie 1 1 + Cre 2 b2

a(n) Cle_iulT ba1 + Cpe  "2"

¢
¢aZ

where C; and C; are arbitrary constants, uj is a constant and
¢ij(1) = ¢(t + 2m) . Using the relationship between the two

characteristic exponents given by Eq. (III-32)}, we write

-igr~dt+24
C1¢p1 + Codpge = o ¢ o H1T

3, = : — < (XI11-16)
C16a1 + Cybage igr=-8t+2iugT

Inspection of Eq. (XIII-16) shows that there are always two periodic
solutions to Eq. (XIII-3) which are periodic with periodicity 2w .

These correspond to

e
o
gt

C1 arbitrary ; C, = 0 = ¢b1/¢a1

Ci = 0 ; Cp arbitrary

-e
o
—
1

dp2/ba2

*
See Ince (1956), Sec. 2.15.

T Recall that in Section IIT we showed that Eqs. (II-4) and (II-5)

never have Form III solutions.
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We call these particular solutions the Floquet particular solutions
for ¢, since each corresponds to a ratio of Floquet Normal Mode
particular solutions.

The Floquet solutions for ¢; are unique in that one of them
may be expanded solely in terms of inverse powers of & . The
other one has an expansion in sl, ed and all inverse powers of ¢ .
To express all other particular solutions to ¢&; other than the
Floquet solutions, all positive and negative powers of e are
required as well as a term proportional to e? . Similar considerations
apply to the Floquet solutions to Eq. (XIII-6).

We found one Floquet solution to Eq. (XIII-3) as a power series
in (l/e)n n=1,2,...,2 . We found the inverse of the other Floquet
solution to Eq. (XIII-3) as a (lle)n (n=1,2,...,%) power series

solution to Eq. (XIII-6).

Relationship of T8 to Usual Singular

Perturbation Treatments

When ¢ d1s very large, Eqs. (XIII-7) and (XIII-11) are "stiff"
equations (the coefficient of the highest order derivative term is
very small). When the term ij is included in the terms taken to

%
be the perturbation, the perturbation is said to be singular.

%
The textbooks by Nayfeh (1973) and Cole (1968) have excellent
discussions of singular perturbations. Also see, Curtise and

Hirschfelder (1952).
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The solutions to stiff equations typically have ﬁhe following
behavior. All solutions, regardless of their boundary conditions,
rrapidly approach a single function as the time wvariable moves forward
or backward. The approached solutions are called "outer solutions."
The singular perturbation series usually gives an asymptotic
approximation to such an "outer solution."” The solution in the
immediate vicinity of the boundary is called an "inner solution" and
it must be found by some technique other than singular perturbation
theory.

Our present treatment differs from the typiéal* singular
perturbation problem in two respects: The first is thét we never
have to compute "inner solutions." The (1/e)-expansion for &,
asymptotically approximates one Floquet solution for ®; . The
(1/e)~expansion of ¢, asymptotically approximates the inverse of
the other Floquet solution for ¢; . We use these approximations
to obtain two linearly independent Floquet solutions to (II-4) and
(1I-5) which may be combined to write a solution obeyiﬁg arbitrary
boundary conditions. |

The second atypical aspect of Technique T8 is that although the

Floquet solutions are the particular solutions which are asymptotically

%*
See Cole's (1968) discussion (in Chap. 2) of an overdamped harmonic
oscillator of extremely small mass as an example of a "typical" singular

perturbation problem,
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approached by the singular perturbation treatment, the Floquet solutions
play the role of outer solutions only when & # 0 and

(-6 + 2Re(in;)) # 0 . To demonstrate this assertion, look at the
general expression for @; given by Eq. (XIII-16). (Analogous
arguments can be made for ¢, .} Consider first the case of
nonvanishing & . When & # 0 , the characteristic exponent, 1uj ,

is in general complex and we must therefore discuss the following

cases.:

Case (A): 6 # 0 ; (-6 + 2Re(iu1)) > 0 .

When these conditions hold, as T gets positively large all
particular solutions approach ¢p2/bar . All particular solutions
approach ¢1,1/9a317 for large negative values of time. 1In this case,
therefore, the Floquet solutions are true "outer" solutions because
all particular solutions approach the Floquet solutions as T is

allowed to become (positively or negatively) large.

Case (B): 8 # 0 ; (~§ + 2Re(iny)) <0 .

The behavior of an arbitrary particular solution in this case
is that it will approach either ¢b;/¢a; or ¢bo/dap as the time
is allowed to get (positively or negatively) large. Im particular:

&, - ¢bl/¢’al as T + o

®1 > Opp Par as T -+ -w
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The Floquet solutions are therefore typical outer solutions in this

instance.

Case (C): &8 # 0 and (-§ + 2Re(diuy)) =0 ; or § = 0 .

When either of the two above conditions are met, the term

(-ie - § + 21m,)

has no real component (recall that from Chapter III, when &8 =0
the characteristic exponents, u; and w, , are pure real).

If (- + 2Re(u;)) is non-integer, from Eq. (XIII-16) we see
that the Floquet particular solutions for ¢, are the only two
particular solutions having periodicity 27 . All others (those
which must have both C; and Cp mnonvanishing) do not have
periodicity 2m . Clearly, the particular solutions which have both
C; and C; nonvanishing will never have periodicity 27 no matter
how far we let the time progress either in a forward or a backward
direction and thus the Floquet solutions are not "outer solutions"
in this instance.

If, on the other hand, (-¢ + 2Re(u1)) is an integer, all
particular solutions are Floquet solutions and there is no approach

to an "outer" solution.
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ZIV. TECHNIQUE T9: THE (e - 16)-EXPANSTION, o AND 8 ARBITRARY
AND BOTH e AND & ARE MUCH LESS THAN UNITY.

Introduction

In this section we solve equations (II-4) and (II-5) by a

perturbation technique which will converge when

both e and ¢ are much less than unity
(X1V-1)
and o and B are arbitrary.

The technique, which we will call "Technique T9," consists of first
solving (II-4) and (II-5) when both & and 6§ are set equal to
zerc. We take these solutions to be the zeroth order solutions and
the terms proportional to & and 6 are taken to be perturbations
on the zeroth order solutions. By this technique we obtain the
Floquet Normal Mode Solutions. The technique which we will detail
has been used by Shirley (1963) and by Series (1970), although,
neither author considers nonvanishing £ and &

We are especially interested in using this technique for the
case of either o or B being much larger than unity, since, when
o, B, ¢ and & are all much smaller than unity we may use "Technique

T5" which has already been explained in Section IX.
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The General Method

If we start with (II-4) and (II-5) and let both & and & go
to zero, the resulting equations can be exactly solved. We have
already given these solutions by equations (IV-2) and (IV-3).

Let us express the solution to (II-4) and (II-5) in the form:

a(r) = F(T)e-i(A'I'JSiHT + G(T)e_i(}\__)SinT
A : \ (X1V-2)
b(t) = .EE F(T>é-1(1+)51nr + 60 = c1(2)sint

where F(t} and G(tr) are functions to be determined and (A+)

and (X_) have already been defined by (IV-3). Such a choice of
a(t) and b(t) may be considered a solution of (II-4) and (II-5)
by the "variation of éonstants" method . Using (XIV-2) in (II-4)

and (II-5) we may obtain equations for F(r) and G(t)

(&i)F (A-)  2iv/R sint
e

F = —(ie + §}{ 2/ + aTn G} (XIV-3)
. " +OPF _23/R sine ()¢
G (i + 6)[;7§r e F + v ] (XIV-4)

where R 1is defined by

R = B2 + 4g2
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The coefficients of F and G in (XIV-3) and (XIV-4) are periodic
with pericdicity (27) . We may therefore use Floquet's Theorem to

write F and G 1in the following form:

P . : T
-i -i(e-18) A4
iv'T i(e-18) 4

G = ¢G
. (X1V~5)
— ' —. [
F o g o TH'T mi(emi8)4
F
where ' is a constant and both ¢G and ¢F are periodic
functions with periodicity (27) . The equations for ¢F and ¢G
now become:
bo-in's. - (ieg + 8)8 _ (1e + )Y e—21/§ sin’r¢ - 0
G G 2/§ G 2vR F
(XIV-6)
’ ie + )8 (ie + 8) (A1) 2ivR sint
- 1yt 4+ AN + e = 0
bp T W op 2R F 2R e
(X1IV-7)

At this point we can assume that u' , ¢F and ¢G may be expanded

according to

p'o= ) (de + §)" u'(n)
n=0
(XIV-8)
6; = Voo(de + 8)° ¢§n) i =F,0
n=0
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We can further substitute the expansions (XIV-8) into (XIV-6) and
(XIV-7), match terms in like powers of (iz+8) , to obtain a set
of perturbation equations which may be solved to obtain the ¢§n)'s

r(n)rs .

and However, it is more convenlent to recast the time

dependent problem into an algebraic, time-independent problem.

Transformation of (XIV-6) and (XIV-7)

Into 2 Time-Independent Problem

To accomplish this transformation we first use Fouriler's

Theorem-to write ¢G and ¢F as:

b, = 1 6, 4 = 7 g UT (XIV-9)
G . i F LT
j=—o JT=
where the Gj's and Fj's are constants. We next write
*
exp(t2ivVR sint] as a Fourier series:
exp[+2i/R sint] = J Jq(zvﬁbe“ aT (XIV-10)

gm-ee

where Jq(2f§} is the Bessel Function of integer order q with

argument - (2/R) s

We may now substitute the Fourier expansions (XIV-9) and (XIV-10)

into equations (XIV-6) and (XIV~7) and after we group terms multiplying

each and every eijT (J = = to =-=) we obtain the following

®
Abramowitz and Stegun (1964), Chap. 9.
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time-independent algebraic equations for the comstants F. and Gj

]

(e - ié)BGj _ (e - i6)(A+) =

S 2VR 2vR PE'“ Jp'j(zfﬁ)FP =0
(XIV-11)
(e - 16)BFs (e - 48)(A_) &
{ -y . = 2vR] =
Q- )FJ' * 2vVR ¥ 2vR pém T5-p¢ Re, 0
(XIV-12)

In both of the above equations, the index j ranges from -w to 4w .

Restatement of (XIV-11) and (XIV-12) As A Quantum

Mechanical Stationary-State Problem

In analogy with Section V, we may think of equations (XIV-11)
and (XIV-12) as the following quantum mechanical problems: solve

the Schrddinger Equation
hF]uF> = u'|u'> (XIV-13)

in the orthonormal (|F,j>;[G,j>) basis. The operator hF may be

written as

by = b+ (e - 1s)h§1) (XIV-14)

k = F,G

PR (XIV-15)

Bk, = 3k
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hél) is defined by:

(M, .. _ B . () ¢
bp [F5> = Rl e pZ_w Ty @R e.p>
(XIV-16)
M lpwy o B e . O ¥
hF |G,J> 21/1?1G’J> 2/§ pz_m Jp—j (ZE)IF,F}:*

The operator hF is non-hermitian and we have split it up into
a part independent of ¢ and § and into a part linearly depending
on e and 6 . Once we solve the time-independent Schrodinger
Equation, equation (XIV-13), we may recover the time-dependent
solutions to (II-4) and (II-5). The eigenvalue, u' , is related to
a Floquet Characteristic exponent, and, if Iu'> is expanded in the
(lF,j>;|G,j>) basis, the expansion coefficients of the hasis
functions correspond to the Fourier expansion coefficients of ¢F
and ¢G .

Perturbation Solution to (XIV-13)

Next we split up hF according to (XIV-14) and solve (XIV-13)

by assuming that both u' and |1'> may be expanded according to

wo= D e oant s us - § (e - 1) ur ™,
n=0 n=0
(XIv-17)
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If the expansions (XIV-17) are substituted into the Schrddinger
Equation, equation (XIV-13), we may obtain a set of perturbation
equations, each equation of which, is proportional to certain power
of (¢ - i8). For example, the zeroth order equation

hF(,O)|1JI(0)> - n'(0)|u'(0)> (le_ls)

The solution to (XIV-18) is:

]-1‘(0) |u1(0)>

(0) . () .
cF’le,y + CG,jIG,;P (X1V-19)

where j dis any positive or negative integer or zero and Cé?; and
Cé?; are to-be-determined comnstants. The problem is thus one of
degenerate perturbation theory, and just as we did in Technique TS,*
we shall solve it using degenerate Rayleigh-SchrSdinger perturbation
theory. Since the final time-dependent results for the Floquet

Normal Modes are invariant to the choice of j in (XIV-19), we will

choose:

¥
See Section IX of this report.
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We therefore have:

U.(D) 0 ; [u'(°)> = (D)|F 0> + c(°)|G,O> (X1Vv-20)
The constants, éo% nd Cé % s as well as u'(l) are found from

the first order perturbation equation:

h§1)|u.(0)> + héo)lu'(l)> - u:(1)|uf(0)> (XIV-21)

Multiplying (XIV-21) first by <F,O[ and then by <G,Df we obtain

(£ (1) (0)
-y Jp 2/_c = 0
2/~ )C - (= /4 (2vR)
(XI1v-22)
Al (0 _ (B4 (0
GRIe@meg - Gl )Cg.p = O
Equations (XIV-22) have a nontrivial sclution if
u;(l) =+ Yy /% (XIV-23)

where

R' = B2+ [2aJy(2VR)]2 .
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The degeneracy is therefore broken in first order and u;(l) will
lead to one of the Floquet Normal Modes and the choice ul(l) will

lead to the other. Since JD(Z/E) may at its largest be unity,

i1
H;( ) is at its largest, %ﬁ .

Cé?% and ,Cé?é

Assoclated with the root

the magnitude of

Aside from normalization, the constants

' (1)

t

are

now determined since we know

¢ (1)

My is

(8 - RN |6,0>
J0€2VR) (\4)

|UL(O)> = |F,00 + (XIV-24)

Assoclated with the root ul(l) is

(0, B3R

F,0> + [G,0
(g + /R [F,0> + [c,0>

Let us now find the first order correction to Iu;(0)> . This

correction is given by the equation
(1. . (0) (9),1 (1) (1) +(0)
hp w0 + N I Hy fu; > (XIV-25)

We may assume that Iu;(1)> may be expanded in the basis set:

k=F,G

{= o tow . (XIV-26)

]u-;-(l)>

(W, -
kgj O, 23>
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1
Substituting (XIV-26) into (XIV-25), we may solve for the Cé ;'s
3
to obtain
(L (1) (1)
]u; > = CG,O[G’0> + C ]F 0>
; (XIV-27)

(8 - /&N L J (2/"}‘F’p _ g 2 Z E(zwr)lc

»P?
2/ Jy(2/R) P

where we have used a prime on the summation signs to indicate that
P = 0 should be excluded from the summations. The coefficients
multiplying ]G,O> and IF,O> are not as yet completely determined

even if we impose the normalization

<u;(°)|u;(l)> = 0 (XTV-28)

These coefficients, as well as the second order correction te u; are,
however, determined from the second order perturbation equation:

(L) (1) (o) v (2) (1) (1) 1(2)) 1 (0)
hy lu; >+ hy lu; > = fp' >+ g ] X (XIV-29)

If we first multiply (XIV-29) by <F,0, and then by <G,0| we get

the following two equations:
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J_1(2/R))2

2@ F,O f- 4R j J
(X1IV-30)
= 1/2 :E(‘l)o u|(2)
2/R F.0 T 2% 6,0 2T0(2/RVR 3

(X1v-31)

= B R @) e /RT)2

* .o 3o 2/B) (n,)

Since for integer order Bessel functions

3, = 3 (XIV-32)

the summations over Bessel functions which appear in (XIV-30) and
(XIV-31) vanish. For the resulting equations to have a solution we

find that

w® oo, (XIV-33)

If we further require the normalization condition given by (XIV-28),

we find that
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We could continue this procedure to obtain approximations to

(XIV-13) to any desired degree of accuracy. We, however, will stop

here and summarize our first approximate solution:

First Solution

W= We - 10 /R (L - 193+

;P(zwﬁblF,p>

F,00 + B2 VRD[G,0> | (¢ - 18)(8 - VRT) 1.
p

My >
* (2, )Jg(2VR) 2VR Jo(2vR)  p

Jj(Z/E) lG,p>

CGEELTSRES LSRRG LI
2VR P P
(XIV~34)

where

R = g2+ 4a? 5 R = 82+ [2039(2/R)]2; A = g - R

In a completely analogous manner, we may obtain the solution

]
arising from 'uf )> . Writdng ¥_ accurate through (e - 16)2

and writing |u_> accurate through (e - 18) , it explicitly is:
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Second Solution

o= - e - 10 B Lo - 103 L
. _ A+JO(2‘/E)IF’O> N |G o + ([-: _ iﬁ)zaz Z' JHECZ/E{_)IG,‘P>
T (8 + YR") R + /R p P

Jpcz@lF,w

" (¢ - i8) A4 Zr + (... - 15)2 + .
P

2vVR P

(XIV-35)
where

A, = B+ R

The Time-Dependent Floquet Normal Modes

From equations (XIV-34) and (XIV-35), we may write to solutions
for F(r) and G(t) . By use of (XIV-2), we may write two Floquet
particular solutions as a power series in (g - i8) . p is related
to p' by: p=qp' +‘}§(a - i8) , If |p'> is expanded in the
(|F,j>;lG,j>) basis, the expansion coefficient of |k,j> corresponds
to the Fourier expansion coefficient kj (k = F,G) . TFor notational

convenlence, we will write the j-th Floquet Normal Mode as

(XIV-36)
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where
bag = Op: 10y sinT " o-1(A)sint
and
%j = %} bps e_:'L_(l"’)slinT +£_72‘_;.2. s e-‘i(J\..)sim

The two medes may therefore be written down by utilizing the

following results:

First Mode - _
up = Y(e -~ 18)(1 + /BRL) + ..
N, IPT
o = 14 (2= 18)(8 - VR , I, (2/Re .
o 2/R Jy(2vR) P P
. | .
o = (B -vRD (e - 18)(A) o J_Pcz/ﬁje .
o (p)Tp(2VR) 2/R : D
(XIV-37)
Second Mode |
CEEEE (CREUYCIEE SR
ipt
o = SAIOQR) | (e - 18) Op) " {2ﬁ2¢§)e .
£ (8 + VR") 2/R b p
; ipt
o4 (e - 182D ¢, I_,2"R)e .

¢
- 8+ RDO/AR p P
(X1V~-38)
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Convergence of (e~1§)~Expansion

The eigenfunctions of (XIV-13), may be expanded in the

(|r,3>;]6:3>) basis:

u'> = Ioc ki3> (¥Iv-39)
| L6 ghw Ko

If we use the degenerate (s-i&)-expansion to solve (XIV-13), wa will

find that the Ck j's nay be written as
’ .

1

¢, . = T (e-i8)® cﬁ“i (XIV-40)

% RN

Each and every Cin; may be written as sums and preducts of terms
»

of the form

B I (2R) ()3 (24R) ’ (DI (27R)
2R j 2/R § 2/R j

(XIV-41)

where ﬁ islany integer and j 1s any iInteger except zero. e

at its smallest, has the mangitude of unity. Jp(ZVﬁb at its
largest can be unity. B8/2/R can at its largest be (X) and

both (A_)}/(2¥R) and (A+)/(2J§) can be at largest of magnitude
unity. We therefore expect the (e-18)-expansicn to convergemas long
as e and § are much smaller than unity regardless of the value
2f 2 and B . Because of the cumbersome nature of this expansion
we will only recommend using it, however, when either o or g

is much larger than unity.
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V. FOUR NUMERICAL SOLUTTIONS

In the following four chapters, we discuss four methods of
numerically finding the Floquet characteristic exponents. The
problem has the fundamental simplification that once one of the
characteristic exponents is known (call it 1y ) the other {call it

us ) is immediately and simply known by Eq. (III-32):
Hp = e = 1d - uy (XV-1)

Knowledge ﬁf the characteristic exponents allows us to solve Egs.
(III-35): the homogeneous linear equations for the Fourier
Expansion Coefficients.

In Chaptexr XVI we discuss the Meadows (1962)-Ashby (1968)
general method of obtaining numerical walues of the characteristic
exponents. We call this technique, T10. Following Meadows and
Ashby, we derive a transcendental equation which involves y and
the determinant of an infinite matrix which is independent of
and which depends only upon the parameters ¢, g, 6 and ¢ . The
determinant is numerically approximated and this result is used in
solving the transcendental equation for a numerical approximation .to

4 . In Chapter ZXVI we also discuss how, once the values for u
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are known, the Fourier Expansion Coefficients are most simply found.
Results from Chapter III are used to introduce simplifications in
finding these expansion coefficients when either or both & and

B vanish. We freely draw upon results established in Chapter XVI
in the chapters following it.

In Chapter XVII we discuss the Autler and Townes (1955)
numerical technique: TI11, This technique only applies when £ = 0 .
We give an expression for one of the characteristic exponents in
terms of two infinite continued fractions both of which depend on
the characteristic exponent. Numerical iterative techniques are
described which yield values for u . The ratios of the Fourier
Expansion Coefficients (Bj;l/Aj) are given as p-dependent infinite
continued fractions. These may be used to obtainh numerical values
for the Fourier coefficients.

In Chapter XVIII, we discuss Tl2. In this technique we take
note of the fact that when B = § = 0 , the problem of finding the

Floquet Normal Modes reduces to the problem of numerically finding an

eigenvalue and an eigenvector of a real, symmetric infinite tridiagonal

matrix. As Technique T12,we recommend direct computer diagonalization
of some large order but finite truncation of the infinite matrix.
This is an extremely fast and easy procedure when we seek eigenvalues

of a real, symmetric, tridiagonal matrix.
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In Chapter XIX we give Techrnique 113. This technique applies
for arbitrary a, B, § and € . The heart of the technique is
numerically solving Eqs. (II-4) and (II~5) to find {aé(r');b&(r')}r

where, j = 1,2; ' is 7m when @ = 0 and 21 otherwise; and

0}

]
]

{aj(0) = 13 b1(0)

0; by(0) 1} .

{az(0)

We use the quantities {35(1');b5(1')} to form a two by two matrix.

Once the eigenvalues of this matrix are known,we easily find the

characteristic exponents from them.

Comparison of the Four Numerical Techniques

We ask at this point: "If we must obtain a solution to Egs.
(1I-4) and (II-5) in a range of the parameters which is not treated
by a perturbation method, which numerical technique should be used?"
The answér depends on whether or not either or both 8 and & vanish.

Case (A): B#0,8#0

In this instance, only TlOland T13 apply. In the Autler-Townes
technique we require that 8 = 0 and in the direct diagbnai%zation
method we require that both B and & wvanish. So, if we w;sh to
write a computer program able to handle arbitrary values of the

parameters, either Tl0 or T13 must be used.
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In T10 the major computaticnal hurdle is approximating an
infinite order determinant. In T13 we must numerically solve complex
differential equations. Since the infinite matrix in T10 has many
vanishing -elements, there are far fewer arithmetical steps in T10
than in T13 and T10 is therefore préferred.

Case (B): R #0; 6§ =20

Since only T10 and Tl3 can handle this case, we again recommend
using T10 for the reasons given in Case (A)'s discussion.

Case (C): B=0; 6 #0

Here, we can use either TlO, T1ll or T13. In computing u , Til
involves iterations on as well successively larger truncations of
infinite continued fractions. T10 only involves successively larger
erder truncations of a matrix and finding determinants of these
matrices. There-are theféfore fewer arithmetical operations involved
in T10 and it is tﬁe pfefeéred tecﬁnique.

Case (D): B=0;8=20

Here T12 is preferred since the diagonalization of a real,
symmetric triadiagonal matrix is especially fast on a computer and
routines for doing so are well documented and are often found as

standard computer soft-ware,
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XVI. TECHNIQUE T10: THE MEADOWS-ASHBY NUMERICAL SOLUTION:
£, 8§ , B AND o ARBITRARY, THE NUMERICAL DETERMINATION OF

FOURIER EXPANSTON COEFFICIENTS.

Introduction

In this section we describe the Meadows (1962) or Ashby (1968)
method of numerically finding the Floquet characteristic exponents.
It is a non-perturbation method in which we derive a transcendental
equation for 1y which involves the evaluation of tﬁe determinant
of an infinite matrix which independent of p . The exact form of
the equation to be solved depends on whether § vanishes and whether
e 1is almost (or exactly) equal to an even integer. We therefore

must distinguish between Case (A) and Case (B).

Case (A): o, B, 8, ¢ Arbitrary Except That If & =0 , € Must Not

Almost (or Exactly) Equal an Even Integer.

If 8§# 0, p may be found by:
Step Al: Evaluate the determinant of the infinite matrix Aj{0)
where A;(0) is defined in the following manner: The rows and

columns of 4;(0) are ordered according to

«vshs,Bo,A1,B1,A,Bp,A_1,B_1,...etcC.

and all elements of A;(0) wvanish except for
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i
[

@Oa, 5585 = G155,

]
GOg, 58,551 T T e - 1)

(XVI-1)
o
210003 558,541 = TF V(e - 10
) - i
2! B,j;B,j*l i+ ¥ - 18)

Step A2: Once det(4;(0)) is known, u 1is found by solving,

sin?[n(u - ¥(e - 18))1 = sin?(M(e - 18) Jdet (41(0))

(XVI-2)

Case (B): o and B Arbitrary., 8§ =0 and € = N Where N 1Is

Some (Positive) Even Integer.

When 6 =0 and e x N, u 1is found in the following manner:
Step Bl: Evaluate the determinant of the infinite matrix él(O)
where 51(0) is identical to QIFO) except for its (AN/Z)-th Tow
and its (B_le)-th row., Letting £ =N+ £ where & is by
hypothesis some small or vanishing real number the matrix elements

of 4;(0) which differ from those of A1(0) are given by:



16-3

N/2

-DN? sin(le)

GOV 50,9,

. N2
21000, Ny g Nx1 = 2a (1) 551“("5/2)

G100y n, 5N, = DV? sin (%) (XVI-3)

N/2
_ 20(-1) sin(n£/2)
(21(00)p M, .x Nga1 £

28 (-1 /2

MNeon o - sin(n&/2)
B,~Ns;B,~Nex1 3

(51(0))

To numerically evaluate these matrix elements, we note that:

sin(re/2) . my _ (/2P €2 (25t D @)™ o
£ 2 3t 51 T (2n + 1)!

(XVI-4)

In the limit of £ going to zero, expression (XVI-4) tends te (n/2)

Step B2: Evaluate u by solving the equation:
sin?[r(u - %)] = det(E1(0)) (XVI-5)
In the prescriptions for finding u which we have give above,

the solution of either (XVI-2} or (XVI-5) offers no special difficulty.

The major computational hurdle is in evaluating the infinite order
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determinants. This is done, however, by truncating §1(0) or

Ay(0) at some high but finite order. Since many elements of the
matrices vanish, efficient computer programs may be written to evaluate
the required determinants. Successively higher order truncations
should be done to check the convergence of this procedure.

The present method was given by Meadows in 1962, Meadows
considered a general system of N first-order linear homogeneocus
differential equations with periodic coefficients. He made no
requirements such as stipulating that the matrix of coefficients be
hermitian etc. As a numerical example, he applies his technique to
the Mathieu equation.

Ashby independently formulated this technique in 1968 and he
is the first author to apply 1t to the problem of a two-state
quantum system in an oscillating classical field. Ashby considered
the case of non-vanishing # but did not allow the "energy" to have
an imaginary component (i.e., he required & = 0 ). We extend
Ashby's results to include non-vanishing & and we give explicit
expressions for handling the special case of 6 = 0 and e equal
(or almost equal) to an even integer. In the remainder of the section
we prove the results given by Eqs. (XVI-2) and (XVI-5). Our methed

of proof is a composite of the ideas of Meadows and Ashby.
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Preliminaries to the Derivation

0f Eqs. (XVI-2) and (XVI-5)

* -
Define the functions U+(T) and ¢ (t) by

a(t) = c+(r) exp|[- }5(5 - 18)1]
- i (XVI_6)
b(t) = a (1) expl[- /ﬁ(e - id)T]
Using (XVI-6) in equations (II-4) and (II-5), we obtain the
differential equations for the functions U+ and o
. iﬁ(a - i6)0+ + 2iccostc = O
(XVI-7)
g + Ef(s - i8)o~ + 2iBcosto + Ziacostd+ = 0

From Floquet's theory and from Fourier's theorem, we may write the

solution to Egs. (XV-2) as

+ ~iut

(XVIvB)‘

- _ e*iUT z

j =—r

* . + -
We work with the functions ¢ and o rather than the functions
a and b since this allows us to avoid division by zero in the

ensuing analysis.



16-6

where 3 , the Aj's and the Bj's are constants. By the
definition of c+ and o in terms of the a(r) and b(r) in

Eqs. (XVI-6), and by comparison of Eqs. (XVI-8), (III-33) and (III-34)
we relate the quantity u in (III-33) to the quantity yu in (XVI-8)

by:
uo= ou+ Y - 18) (XVI~9)

The Aj's and Bj's in (XVI-8) are exactly those which appear in
Eq. (III-34). Substituting (XVI-8) into (XVI-7) we obtain two

equations of the form:

L= =]

Z C. expl-1(u - {)t] = O
s J

]
If these are to be valild for all wvalues of the variable T , then
each coefficient, Cj » must be zero. Thus we obtain two sets of
equations:

[ - }i(e - i8) - ﬂ]Aj + G[Bj+l + B ] = 0 (XVI-1Q)

i-1

. 1 _ oz _ =
[3 + A(e - i8) u]Bj + a[Aj+l + Aj_l] + B[Bj+l + Bj_l]

(XVI-11)
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Dividing Eq. (XVI-10) by [i - ¥ (e - 18)] and dividing Eq. (XVI-11)

by [j + }ﬁ(a - id8)] , we obtain

[ =Y~ 18) - u] _
TN - 4 P TTRe Tt B T By = 0
[i + Yole - i6) - 1] B

T+ Yote - 18) B3 T ¥ Lo(e — 1oy Byer T Bygd
a —
P Tt - e T Ayl = 0
(XVI-12)

Eqs. (XVI-12) can be compactly expressed by the infinite matrix

- equation:

AC = 0 (XVI-13)

where C 1is the infinite column vector the elements of which are

ordered:
«+5A1,B1,A9,Bp,A,B-7,...

and 4 is an infinite square matrix. In A we order and label the

rews and coelumns according to
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voe3A1,B1,A0,Bp,A-1,B1,...
All elements of A wvanish except for the following:

[1 - Y(e - 18) - 7]
Waias = T 3 - %G - iD

3 + Y%(c - 18) - 1]

CQ)B,j;B,j - i+ (e - i8)
() = a | (XVI-14)
z"A,3;B,3%1 i~ % - 18)
(8) - B
= B,J3B,jtl i+ AH(e - 16)

o
Wg 558,521 = T+ B = 18)

If Eq. (XVI-13) is to have a non-trivial solution for the vector

C , the determinant of A must vanish. The equation which determines

=

therefore ig:

=1

det (A(1)) = 0 (XVI-14a)
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Derivation of the Transcendental Equation for ;

Eq. (XVI-1l4a) is difficult to solve and we therefore approach the
problem of determining by first defining the matrix él which
is obtained from A by dividing gvery row in A by its diagenal
element, 4, , therefore, has all its diagonal elements equalling

unity. All elements of 4) vanish except for the following:

{A . = A . =

Wagag T @g gy = 1
. a

N T ICES TR

(XVI-15)

) B

(Ql)B,j;B,jil 3+ Y -18) -1
]

s T TYRE oo

where we label and order the rows and columns of Ay just as we

labelled and ordered the rows and columns of

(2 g

Clearly, Ay
and 43;(0) are related by 8)(0) = 1lim (Ay).
~ i u—}o -~
The determinants of the two matrices A and A; are related by:

n - Yl -18) -5 n+ W(e - i8) - 7
n- B -1 20 o3 (e - 18) )ldet(4y)

det(4) = [ 1 ¢

n=-tw

(XVI-16)
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*
Using the infinite product:

4
sinz = Z I (1+75), ns=-o..4
n%o nmw
wea find,
det (4) sin[r(% (e - 18) - Wlsin[n(Y(e ~ 18) - 1) ldet(4))

sinz[wé(e ~ 1i68)1]

By using trigonometric identities, we rewrite the previous equatiomn

as:

_ gin (um)
sin2{mh (e - i6)]

det(a) = [1 Jdet(Ay) {(XVI-17)
Let us now study det(él(ﬁ)) as a function of the complex
variable u . It is easy to see that det(él(ﬂ)) is a periodic

function of ﬁ :

det(%1(ﬁ +n)) = det(%1(ﬁ))

where n 1is any positive or negative integer. This follows from

the fact that the infinite matrix A;(u) is idemtical to the infinite

matrix Aj(u + n)

*
See Abramowitz and Stegup (1964}, Eq. 4.3.89.
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By inspection of (XVI-15), it is evident that det(4;{(y)) has
poles at 1y = t%ﬁ(s - 18) + q where q is any positive or negative

integer or zero. These poles are simple poles. This assertion is

validated by noting that the function
£ = (2¥(e ~ 16) + q - det(4; (1))

has no poles at p = i%@(e - i8) + q‘. Multiplication of one row of
a determinant by a scalar is equivalent to multiplication of the
determinant itself by the same scalar. f(W) » therefore, is the
determinant of the matrix obtained by multiplying the row containing
the denominator (+%(e - i8) + q - 1) by the quantity
(i%ﬁ(s ~ 18) + q - W) . The matrix obtained in this manner (and,
therefore, its determinant) has no poles at p = i%ﬁ(e - 18 +q .
We finally note that the residue at the poles (+Y4(ec - 18) + q)
is independent of the value of the integer q . This follows
immediately from the periodicity of det(4;(n))
With the preceeding properties in mind, we write a formal

expansion of det(4d;(p)) as:

K T “s

- - ® A
det(41()) = Ko+ | [ T5 oo Tt D Wrmaeme 1

q=—m q‘_—.—cn

+ (XVI-18)
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&
where Ky, KA, and KB are constantsa. Using the fact that

o 1 _
Z 4+ z = TCcotwz
q=-w
we write,
E 1 = meos[n(x¥% (e - 1§) - ]
R CERACEEO RN % u
(XVI~-19)
Using the summation (XVI-19} in (XVI-18), we obtain:
det(gl(ﬁ)) = Ko + 1K, cot[m(M(e ~ i8) - )] +
(XvI-20)

+ mKy cot[-1(¥h(e ~ 18) + 1)]

We determine the expansion coefficients in (XVI-18) by considering
the limit of Eq. (XVI-18) as the imaginary part of goes to tw
When the imaginary part of , becomes (positively or negatively)
extremely large, the off-diagonal elements of Ay tend to become
very small and A) tends towards the infinite unit matrix. In the

limit, we therefore have:

_ lim [det(a;(0))] = 1 (XVI-21)
Imy + te -

* See Jolley (1925), Eq. (450a).
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If we consider the cotangent of the complex argument

(Zr - iZi) , we have

i[ezi + o 2i%r e 2y

cot(Z_ - 1iZ ) - - —
T i {ezl e 217y e Zl]

Taking the limit offers ne difficulty and we obtain:

lim [c-ot-(Zr - iZi)] = i (XV1-22)

Zi+im

If we now look at Eq. (XVI-20) and take its limit letting the
imaginary part of u go first to +~ and then to -» , we

respectively have:

=
I

Ko + ik, + imKg (XVI-23)

[
n

Ko - i'nKA - inKB (XVI-24)

Add (XVI-23) to (XVI-24) to find Kg = 1 . Subtract  (XVI-23) from
(XVI-22) to find KB = -KA . We rewrite (XVI-20) by using

trigonometric identities and the fact that KB = -KA and K0'= 1:

sin[ (e - 18)Jcos[ /(e - 18)])
sin2[Mh (e - 18)] - sin®(qum)

det(A (1)) = 1+ 2mK,[ (XVI-25)
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This equation is valid for all values of ﬂ , and in order to

evaluate the comstant, K, , let us set § equal to zero to obtain

. i
c - tan[/ééi = 18] dera, (0) - 11 (XVI-26)

Substituting (XVI-26) and (XVI-25) into Eq. (XVI-17), we find am

expression for det(4(W)) in terms of U

- 2(u
det(8() = det(81(0) - grt Ty (VI-2D)

Bq. (XVI-27) is the important result since we use it to obtain

an equation for the characteristic exponents. The original Floquet
problem had a solution if det(é(ﬁ)) =0

Use this relation in
(XVI-27) to find:

sin?(ur) = sin?[% (e - 18)]det(s,(0)) (XVI-28)

If we rewrite this equation in terms of 3 by using

H o= u- (e - 18)

we have Eq. (XVI-2): the basic result for numerically determining

does not equal a positive even
integer 1f 6 wvanishes.
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Case of &§ = 0 and e Exactly (or Almost)

An Even Integer

Clearly; if 6 =0 and e is exactly or almost equal to an even
integer, Eq. (¥VI-28} is not useful in determining a numerical wvalue
for v . If we let e=N+ £ where £ dis some small or vanishing
real number and N is some positive ewven integer, then for & = 0
the AN/Z—th row of 51(0) contains terms proportional to (1/£)
Thg B_le—th row of el(O) also contains terms proportional to
(l/é) . Such terms are indeterminate as £ approaches zero and are
very large for  § very small. We must therefore patch things up.

This is easily done by noting that the right-hand side of

(XVI-28) may be rewritten as
det(A,(0)) (XVI-29)

where the matrix (§1(0)) is generated from the marrix (4,(0)) by
multiplying the AN/Z-th row of A1(0) by sin[we/2] and
multiplying the B_le—th row of A1(0) by sin{we/2] . Letting

e=N+ £, we have

sin(™® = (-DV? sin(®
2 2
The effect of these row multiplications is to produce a right-hand

gide of (XVI-28) which converges for £ going to zero. We therefore
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have found how to re-express Eq. (XVI-2) for the instance of § = (
and e being an even integer, by finding is appropriate limiting
form. We have summarized the procedure to be used in this case as

Steps Bl and B2 in the introduction to this chapter.

Numerical Determination of Fourier Expansion Coefficients

We now focus our attention on numerically finding the Fourier
Expansion Coefficients. Our present discussion does not depend on
how we numerically find uw . As usual, we write the Floquet Normal

Modes as:

(XVI-30)

where k=1or 2, u is constant and the A, . 's and B. "s are
k jk jk
the Fourler Expansion Coefficients. We have already derived the
infinite linear homogeneous equations which determine the expansion
coefficients and they are given by Eqs. (III-35).
Assume a value of p has been found by any of the numerical

techniques. Call it u; . The other characteristic exponent, v, ,

is found by

up = & - 18 - 1y (XVI-31)
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The expansion coefficients {Ajl;le} and {AjZ;BjZ} are associated
with p; and u; respectively.

Using e in Eq. (III-35) to find {Ajk;Bjk} we numerically
solve Eq. (III-35) by truncating the infinite set of equations to a
set of M homogeneous linear equations in M unknowns. These can
be solved by well known numerical techniques. (See Wilkinson (1965},
Chap. 4.) Successively larger order truncations should be taken to
insure that this numerical method of approximation is converging.

Care must also be taken in knowing u to sufficient accuracy, since,
if the determinant of the truncated coefficient matrix is not
exceedingly small (or zero) numerical instabilities will be introduced
into the problem. The expansion coefficients will in general be
complex constants. We then use the same technique to find the
expansion coefficients associated with the other value of u . We

do find however that if certain parameters vanish, simplifications

are introduced into the problem. We therefore discuss the following
four cases:

Case Cl: B # 0; & # 0.

In this case the coefficients are complex. No simplifications
may be introduced and Eq., (III-35) must be solved once with U=
and again with u = p, to find {Ajl;le} and {AjZ;BjZ}

respectively.
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Case C2: B =0, ¢ # 0.

Although the Fourier Expansion Coefficients are complex, a
slight simplification will arise. If 8 =0 , Eq. (III-35) shows
that only even Bj’s are coupied to odd Aj's and only odd Bj's
are coupled to even Aj's . This means that for the Fourier
Expansion Coeffilcients associated with w; we will find either (a)
all odd Aj's and all even Bj's vanish, or (b) all even Aj's
and all odd Bj's vanish. Except if we use the Autler-Townes
Technique (T1ll), we do not 4 priori know whether type (a) solutions
or type (b) solutions correspond to the numerically computed value
of u; . We will i posteriori find this out. In the computation of
the expansion coefficients corresponding to u; we will therefore
know whether to assume type (a) or type (b) sclutions. This
knowledge will save some computational effort.

In the Autler-Townes technique (T1ll), we know before we compute
it, whether u; corresponds to type (a) or type (b) solutions. We
therefore may automatically set half of the expansion coefficients
equal to zero when computing them. The same is true of u, and the

expansion coefficients associated with it.

Case C3: B # 0, § = 0.

A fundamental simplification which arises in this case is that
the Ajk's and Bjk's must be pure real. In Chapter III we showed
that 1 1is pure real when &6 = 0 . The matrix g in Eq. (III-35)
is pure real and therefore the Ajk's and Bjk's are pure real,

Complex arithmetic need not be used in numerically computing them,
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A further simplification arises because the Ajz's and sz's

are obtained in terms of the Ajl's and le's by:

-]

I (BT 5y (28)

= e QO

>
"

(XVI-32)

kz_m (A )9y 1 (28)

w
]

j2

where Jq(ZB) is the integer order Bessel Function of order q and

argument (2R) . If (2B) is small only a few terms in (XVI-32)

%*
need be retained since Jq(ZB) is given by

8k

3 = nGglal §O_BD "
el -1)% kzo TR

and it is therefore small for small values of (28) .
To prove (XVI-32), we note that from Eq. (III-18), we have:

* —igt -2iBsint
e e

_bl

as
(XVI-33)

* —jet -2iBsint
a, e e

b = 1

If aj,ap,b) and by, are given by (XVI-30), we use the fact that

Up = € = M} to write:

*
Abramowitz and Stegun (1964), Eq. (9.1.10).

+
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o . o .
z A eiJT - Z B'l e ijt o 2ifsint
Lo T2 o
J=-= 1
(XVI-34)
oo [+-]
ijt  _ -ijt -2iBsinT
) B,, e = 'z Agp e e
=a - j=m—w
‘ *
Substituting
21Bsi v i
o iBsint _ z T (28)e” qt

q==

into Egs. (XVI-34), we obtain two equations of the form

og i'

Z C.le JT] = 0

jm-e

If these are to be valid for all values of 1t , the result given by

(XVI-32) must be true.

Case C4: B =0, § = 0.

We again know that the expansion coefficients are real and in
this case, the determination of the Ajz's and sz's from the Ajl's
and le's is very easy. Take the limit of Eq. (XVI-32) as B goes

to zero. Using the result:

lim [J (2B)] = & . ,
B+0 9 a0

&%
Abramowitz and Stegun (1964), Chap. 9.
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we have

(XVIi-35)
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XVI1. TECHNIQUE T11l: THE AUTLER-TOWNES NUMERICAL SOLUTTION:

£, & AND o ARBITRARY, =0 .

Introduction

If B = 0 , we can numerically determine the characteristic
exponents and the Fourier Expansion Coefficients-by a technique
first formulated by Autler and Townes (1955). We call the technique
Tll. Autler and Townes derived an expression for the characteristic
exponent for the two-level system in an osclllating field. We
trivially extend their work to iInclude the case of non-vanishing
) .* Their technique inveolves the following steps:
Step 1: Find the characteristic exponent associated with the solution
which has all odd Aj's and all even B,'s equal to zero by using

]

the following exact expression for yu :

(XVII-1)

Unfortunately, Tll cannct be extended to cover the case of

non-vanishing g .
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where

S .
Mj = 3 G - w j even
(XVII-2)
_ 1 _ .
My = @ +e-18-w) jod

Eq. (XVII-1) gives the (in general) complex quantity p in terms of

two infinite continued fractions which themselves involve u . As

it stands, we are not able to manipulate Eq. (XVII-1) to obtain 1

as an explicit function of the parameters o, € and 6§ . It is,

however, amenable to numerical sclution and Autler and Townes report .

that the following algorithm has been successfully used to obtain 1y .
A trial value of u is used in (XVII-1) and the two continued

fractions are evaluated with two or three denominators retained. If

the sum of the two fractions does not equal the original trial value

of u , try a new value of yu between the computed value and the

original trial value. Continue this procedure until the trial value

and the computed value agree within some specified accuracy. Repeat

this procedure using several addifional denominators. When the

result is unaffected by using two additional denominators, we can

consider the final value of p to be the final result.

Step 2: The value of y from Step 1 (call it L3 ) is associated with

the solution which has all odd Aj's and all even Bj's vanishing.

The non-vanishing coefficients are computed from,
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B
_i:_l = M. +1 (XVII-3)
J Mg =1
42 ~ L
43~ L
i+4
and
Biy1 \
S (XVII-4)
j M, -1
Mj—2 -1
Mj—B -1
Mj—[} - .
We are free to choose normalization and therefore the procedure is to
arbitrarily set Ag =1 . We find B_; from (XVII-3) and we find
By from (XVII-4). Knowing B; we use (XVII-3) to find Ay . Ao
is found by using the value of B_.i in (XVII-4), etc. This procedure

is continued until we find that the

than some predetermined magnitude.

coefficients generated are smaller

The bottleneck in the procedure is,

of course, the evaluation of the infinite continued fractions which are

dependent on the known value of u

difficulty. /A

We compute (Bjil j)

two denominators.

the numerical value of (B A))

je1/4y

specified accuracy.

This offers, however, no great

by first retaining, for example,

Succesgively retain two more denominators unti]

does not change within some
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Step 3: up 1is simply given by

By = g - 1§ - Wy
If & # 0 , repeat the procedure in Step 2 mrow choosing By = 1
since we seek the solution with all even Aj's and all odd Bj’s
equal to zere. Tf § =0 the second set of Fourler Expansion

Coefficients are found by inspection from Eq. (XVI-35).

Derivation of TI11

In what follows we derive the equations used in the Autler-.
Townes method. We give results in terms of the notation already
introduced and we trivially extend Autler and Townes' results to
include non-wvanishing & .

Starting with Eqs. (II-4) and (II-5), we set B = 0 :

=2iccosth

o
n

, {XVII-5)
—j(e - 1d) - 2iocosta

o
]

We make use of the Floquet results as well as Fourier's Theorem to

write the sclutions to (XVII-5) as:



= w0 3
o 1T X A eiJT

B J

W
1

b = e—iil‘r z B €..‘.Lj'l'
j=--m J
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(XVII-6)

where the A,'s and B,'s are Fourier Expansion Coefficients.

] A

Substituting (XVII-6) into (XVII-5) we obtain two sets of equations

for the expansion coefficients which involve the as-yet-undetermined -

characteristic exponent:

My + By ¥ By = 0

Mj+1Bj+l + Aj + Aj+2 = 0
where
M, o= IG5 - )
5 5 u J even
= 1,
= E‘j +e - 48 - p) i odd

If we now let

(XVII-7)

(XVII-8)

(XVII-9)

(XVII-10)



then Eq. (XVII-7) becomes
M, +x, +
J J

and Eq. (XVII-8) can be written in

1
Mj+l + 7 +
h|
or
M, .+
i~-1  x,
J
From Eqs. (XVII-11) and (XVII-12),
X, @
J
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yj = 0 (XVII-11)
either of two forms:
1
” = 0 (XVII-12)
j+2
1
— = 0 (XVII-13)
yj _2

we eliminate yj to obtain for

(XVII-14)

By iteration on Eq. (XVII-14), we have:



17-7

Ei:i = x, = -M.+1
Aj ] M -1
1+1
je2 ~ 1
Mg + 1
*i44
(XVII-15)
= oM +1
Mj+1 -1
42 T L
372
j+4e -

This is just the expression which we wrote as Eq. (XVII-3) and which
we use in the numerical determination of Fourier Expansion
Coefficients. Similarly, if we eliminate xj between Eqs. (XVII-11)

and (XVII-13), we obtain yj as:

= -M, +1 (XVII-16)
M +1

Yy-2

Performing iterations on this expression we have:

B
j+
3 —
“j—-l 1
Mj—2 -1
Mj"-3 -1
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This is just the expression previously written as (XVII-4).
It is also éasy to obtain 1/xj and .'l./y._i as infinite

continued fractions. From (XVII-13) we have

A

i IS SRRV B
S SRR A
Combining this with Eq. (XVII-16),
A
- = - Mg+ 1 (XVII-18)
j~1 M -1
j-2
M, 5 -1
Mo, - 1
Mj—5 = .

In an exactly similar fashion we combined Egs. (XVII-12) and

(XVII-15) to find:

A
3+l M -1
§+2
M g - 1
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Since Eqs. (XVII-7) and (XVII-8) couple even Aj's with odd
B,'s and vice versa, there aré two linearly independent particular
solutions te Egs. (XVI-3) and (XVI-4):

First solution: All Aj's even; all Bj's odd.

Second solution: All Aj's odd; all Bj's even.

These two particular solutions correspond to the two Floquet Normal
Modes.

The value of u for the first particular solution (or Floquet

Mode) is obtained from Eq. (XVII-11) with j =0 .
My + %9 +yp = 0
Using Eqs. (XVII-15) and (XVII-17), we obtain an expression for

the characteristic exponent u which is a sum of two infinite

continued fractions bhoth of which contain u .

B 1 _1
s - "M -1 M, -1 (XVII-20)
Mz - l M—Z = 1
My - 1 M_3 -~ 1
M, - ... M, - ...

This equation is, of course, just (XVII-1) rewritten.
The value of u for the second solution (or Floquet Mode) is
obtained by first setting j = 1 in (XVII-11l) and by then making

use of Eqs. (XVII-15) and (XVII-17):
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1 I S
Mp -1 Mg -1
Ma -1 My -1
Mq“"... Mz--o.v

po_ 1 - -
5 a(l + ¢ i8)

(XVIiI-21)

However, the value of 1 for the second mode is most easily and
quickly obtained by using Egq. (III-32) and thereby excluding the

evaluation of the continued fractions in Eq. (XVII-21).



18-1

XVIIT. TECHNTIQUE Tl12. COMPUTER DIAGONALIZATION OF REAL, SYMMETRIC

TRIDIAGONAL MATRIX. B8 =6 =0 . ¢, o ARBITRARY,

This technique is simply stated: find one eigenvalue and one

elgenvector of
(¥ -u)c = o. (XVIII-1)

where, W is the eigenvalue. C 1s an infinite column vector the

rows of which are ordered according to

«+>Ap,B1,A0,B1,A-5,B_3,... (XVIII-2)

I 4s the infinite unit matrix and @ is an infinite square matrix

-~

having rows and columns ordered according to (XVIII-2). All elements

of

234

vanish except for the following:

(M)A,j;A,j = (XVIII-3)
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is therefore real, symmetric and tridiagomal. It is, however,

[ R4}

Infinite and we approach the numerical soclution of (XVIII-1) by
truncating @ and C at some large but finite order, Because of

's special form, solving the truncated eigenvalue problem is an

nzt

extremely easy computer problem. Wilkinson discusses this at length
in Chapter 5 of his (1965) book. Because of the indeterminacy in
y , we need find only one eigenvalue and one eigenvector of (XVIII-1)
to determine one of the Floquet Modes. The other mode is found by
using Eq. (XV-1) with & = 0 . The Fourier coefficients corresponding
to the other mode are simply found by applying Eqs. (XVI-35).

We recommend this direct computer diagonalization of a matrix
only for the case of & = 8 = 0 since it is only for this case that

the problem is especially simple.

Derivation of Eq. (XVIII-1)

We have already derived the linear equations for the Fourier
Expansion Coefficients. These are given by Eqs. (XVII-7) and (XVII-8).
Multiplying these latter equations by o and then setting & equal

to zero, we obtain:

(- u)Aj + “[Bjﬂ + Bj_l] = 0 (XVIII-4)

A

3+¢e- u)Bj +alA j_J_] = 0 (XVIII-5)

4+ T
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Noting that these equations have a solution for Aj = Bk = 0 where

j 1s odd and k 1is even, we set these coefficients equal to zero

and thereby derive the matrix equations given by (XVIII-1).
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XIX. TECHNIQUE T13: NUMERICAL SOLUTION OF EQS. (II-4) and (IT1-5)

TO OBTAIN CHARACTERISTIC EXPONENTS.

Introduction

T13 is a numerical method for finding the exact values of the
characteristic exponent. Shirley (1963) derived this technique for
B=0=¢ but it can also be used when § and 8 are non-vanishing.
Since the major computational hurdle is numerically solving
differential equations, it is easily computer programmed since
routines numerically solving differential equations are often found
in standard computer soft-ware.

The basic idea in Tl3 is to numerically find at t' = 1 or
! = 2 the values of {ai(r');bi(r')} and {aé(r');bé(r')} where
{aé(T');b&(T')} (j = 1,2) satisfy Egqs. (II-4) and (II-5) and obey

the following initial conditions:

]
]

Solution 1: ai(O) = 1 bi(O)
(XIX*l)

]

Il
[

Solution 2: aé(o) 0 ; bé(O)

Solutions 1 and 2 are not in general Floquet particular solutions.
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#*
We find {ag(r’);bé(T')} by using the Runge-Kutta or some
other numerical method. We use {ai(T');bi(T')} in finding the

roots ro the following secular equation

al(t") - s al(th

1

det z = 0
bi(z") by(z") - s

This determines the characteristic exponents since the roots of the

secular equation are related to the characteristic exponents by:
8 = exp[-iut']

We need only find one of the characteristic exponents because both

are immediately known once one of them is known:
Uy *Fup = e - ié (XIX-2)

The optimum recipe to use in obtaining the characteristic
exponents depends on which (if any) parameters vanish. We therefore
break the discussion into four cases. Knowing wvalues of u , we
find the Fourier Expansion Coefficients by using the methods already
discussed in Chapter XVI and we thereby numerically find the Floquet

solutions.,

%
See Carnahan, Luther, and Wilkes (1969), Chap. 6,
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Case At a, B, 6 and e Are All Non-Vanishing

With definitions (XIX~1) in mind, the prescription is to find
by some suitable numerical technique the quantities: ai(2w), bé(Zﬂ),
aé(Zn) anc bé(Zw) . These are, in general, complex quantities.

The complex value of p is found by:

- 1 -1 i
W = 3, tan [- E;ﬂ (XIX%-3)
W, = -2% (/7 + (5)2) . (XIX-4)

where u = ur + iui , and 5. and s are respectively the real and

i
imaginary components of the complex number s : s = s + isi . 8 1is
given by:
—94 - 1
5 = %ﬁ[ai(Zw) + hé(2ﬁ) + [(ai(2w) + bé(Zﬂ))2 - 4e 2ien e 26%11@]
(X1X%-5)

Use {XIX-2) to find the other value of u .

Case B: o, €, 8 Are All Non-Vanishing. & =0

Here we merely need to know ai(Zw) . Calling

ai(Zw) = a_ + iai . (XIX-6)
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4 d1is pure real and it is given by:

1
o= 3% cos™1[ycos(em) + (1 - (Yl)z)/z sin(er)] (XIX-7)

where vy; = arcos(sn) - a,sin(em) . Again use (XIX-2) to find the

i

other characteristic exponent.

Case C: a, £, § Are All Non-Vanishing. £ =0

For this case, we only need to find solutions 1 and 2 (defined
in Eq. (XIX-1)) at 1' = v . Assume that we know ajim®) and béiﬁi .

The complex quantity u is defined by

N + iny
and it is computed by:
S
= %tan‘l[— S—i] (XIX-8)
r
b o= 2 /GOZF D) (XIX~9)
i il r i

where 5. and 8, are respectively the real and imaginary components

of the complex number s where

s = s_+ is,
1
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and,

— — 1
s = Ylal(m) - by(m + [(a)(m) - by(m)? + 4e 1T 5T 22

(XIX-10)

The other characteristic exponent is most simply found by use of

Eq. (XIX-2).

Case D: e, o Non-Vanishing. &8 =f = 0

Here we only have to know a;(m) . It completely determines

one of the characteristic exponents. Let us define
1 - :
a; (m) a, + ia;
The quantity v dis pure real and it is given by

o= % cos_l[stin(gw/Z) + [1 - (Yz)Z]aﬁ cos (e7/2) ]

(XIX~-11)
where

Y2 = a_ sin(en/2) + a, cos{(en/2)

i

Use Eq. (XIX-2) to find the other characteristic exponent.
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Derivation of Results

The fundamental result which we use in this technique is found
in Appendix A as Eq. (A-12). The result, applied to Eqs. (II-4) and
(II-3), is that if we know aj(2m), bi(2w), a£(2ﬁ) and bé(Zw) and

if

e—721'rru

*
8 1is given as the roots to the following secular equation:

ai(Zw) - s aé(Zn)
det = 0 (X1%-12)
BI(21)  BL(2M) - s

Eq. (XIX-12) has two roots (which may or may not be distinet). It
is sufficient, however, to deal with only one of them since we know
that the two characteristic exponents are related by Eq. (XIX-2).
We get the expressions for u given in the introduction to
this chapter from (XIX-12). Simplifications are made in the final

results by using some results from Chapter III.

To match up the notation used here with the notation used in Eq.
(A-12) make the following identificatiomns: =n = 2; tg = 0; P = 2m;

P11 7 ai; P12 = aé; $ay1 = bi and ¢y5 = bé
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Cagse A: e, o, 6 and B Are All Non-Vanishing

Expanding the determimant in Eq. (XIX-12), we find a quadratic
equation in the quantity s . The solution for s corresponding

to taking the plus sign in the quadratic formula is:

—1'—
s = Wlaj@m) + bl (2m) + [(a;(2m) + bé(Zﬁ))z é

~4[a) (2m)bj(21) - bi(2m)ay(2m)]

(XIX-13)
From (ITI-14), we have
al@mby(2m) - aj@mblem) = & 2T T (ax-14)
Eq. (XIX-14) is used to simplify the expression for s given by

(XIX-13). We thereby obtain the expression for s given by Eq.

(XIX-5). Since we write
s = s5_+ 1s
r
and_

e—Ziv(ur + dug)
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we obtain the following two equations which determine Hy and My
the real and imaginary components of respectively:

274

s = @ cos(2wur)

(XIX-15)

5, = -eznui sin(Zwur)

These have the solution given by Eqs. (XIX-3) and (XIX-4).

Case B: a, e, B Are All Non—Vanishing. § =0

When & vanishes we have the fundamental simplification that
U 1s pure real (see Chapter III for proof). Furthermore, by

applying relations (III-18), we have

aé(ZH) —(bi(2ﬂ))* e_ZiEﬂ

(XIX-16)

I

by (2m) (al (2m)) ™ e 24eT

The secular equation, Eq. (XIX-12), is therefore simplified to

ai(Zw) -5 .-(bi(2ﬂ))* e_2iETr
det * =2iew =0
bi(Zﬂ) (ai(Zﬁ)) e - s

(XIX-17)
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We expand the determinant and use the fact that from Eq. (III-15} we

have
% %
ai(Zﬂ)(ai(Zw)) + b1(2ﬂ)(bi(2ﬂ)) = 1

to obtain:

s? - s(al(2m) +@l(@m)” TNy 4 g2 _ 6 (xrx-18)
Thus s depends only upon ¢ and a{(Zw) . Calling
ai(Zw) = a + iai
we find a solution for s as:
s = e 40 - () 4 (XIX-19)
where
Y1 = -ar cos(em) - a; sin(em)

Since s is related to the characteristic exponent by
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e—Ziuw -

and since p is pure real, we obtain the solution for u given

by Eq. (XIX-7).

General Consideration When £ Vanishes

When R wvanishes, a fundamental simplification cccurs: we
need carry out the numerical solution of Egs. {II-4) and (1I-5)
only to t' =7 rather than t1' = 27 .

To demonstrate this, consider the functions {c(t);d(t)}

which in terms of a(r) and b(r) are defined by:

e(t) = alr)
(XIX-20)
d{r) = b(r)eiT

From Eq. (II-4) and (II-5), we derive equations for c(t) and b(t) :

—ZiT)

¢ = =-ia(l +e d

{(XI1X-21)
§ = -i(e -1 - 16)d - ia(l + e*¥T)a

By Floquet's Theorem, there exist particular solutions to Eq. (X1X%-21)

of the form:
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Ty (1)
(X1X-22)

- -iﬁkT
dy e ¢dk(T)

where k = 1,2 ; ¢jk(r + 7)) = ¢jk(r) where j =c¢,d and k = 1,2 ;

and iz a constant. We have already shown that for B = 0 , one

Hk
of the Floquet solutions for {a(t);b(t)} is written

aj(t) = e—lulr z A e21jT

jome 31
7 (X1X-23)
bi(t) = e—iult X le e1(2j+1)‘r
===
The other is given by:
as(t) = e_iuzT X Aj2 F.-j'(2j+1)T
j:—m
(XIX-24)
bg(T) = e-i].lz"f z B eZijT

j=—!:o

Because of the indeterminacy in the characteristic exponents, we may

write u, as

g = 1

and thereby write (XIX-24) as:
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ap(t) = o iHatT X A eZi(j+1)'r

(XIX-25)

-iuzT z B ei(2j+l)T

bZ(T) jz

|
]

j =—00

From the definition of {e(T);d(t)} 1in terms of {a(t);b(1)} we

see that there are two particular solutions to Eqs. (XIX-21) of the

form:
c1(t) = e—iult Z A eleT
g 31
(X1X-26)
RS STPY & o 21 (j+1)~
di (1) e jz_m le e
and
co(r) = g IH2T jz_m Ay 21T
(X1%-27)
~iust - PANGEIBE
d(1) = e 2 jz_m sz e J

Comparison of Eqs. (XIX-22), (XIX-26), and (XIX-27) shows that the
characteristic exponents associated with the functions {e(1);d(T)}
are exactly those associated with the functions {a(t);b(t)} . When
B =0, therefore, we find the characteristic exponents assoclated

with {a(t);b(t)} by solving
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ici(n) -8 Cé{ﬁ)
det = 0 (XIX-28)
di(ﬂ) dy(n) - s
where =8 =-e_iu'IT and,
e'(0) = 1+ d'(0) = 0
e'(0) = 0; d'(@® = 0

Since e¢f1) and d(r) are defined in terms of a(r} and b(1) by

Eq. (XI¥-20), we rewrite the secular equation, Eq. (XIX~28), as:

ai{w) -5 aa(ﬂ)
det- 1 = 0 (X1X-29)
—bi(w) -b;(w)'— 5

where s = exp[-iun] and

 ai(0) = 13 bi(O) = 0

535(09 = 0 ; bE(O) =

'_J

Therefore, te numerically obtain the characteristic exponents when
£ =0, we need only numerically selve Ega. (II-4) .and (II-5) from

g=0 to Tv=m instead of from TtT=0 to T = 27 .
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Case C: a, €, § Are All Non-Vanishing. B =0

Expanding the determinant in (XIX-29), we find s by solving:

52 - s[a;(ﬂ) - bé(w)} - ai(w)bg(w) + aé(w)bi(ﬂ) = Q
{XIX-30)
From Eq. (III-14), we have
al(Mb(r) - al(mbl(n) = e €T 70T (XTX-31)
This result is used to simplify Eq. (XII-29):
5 ' ' —iewr -&r _
B* - s[al(ﬂ) - bz(ﬂ)] - a e = 0 (XIX-32)

Using the quadratic formula and taking the solution for s
corresponding to the plus sign we find that s is (in general)
complex and is given by the expression we have already written as

Eq. (XIX-10). s and u are complex and we therefore write:

8 = s + is,
T i

o= Ur+illi
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e—iuw

Since s = , we have the following equations which determine

one value pf y

5 = 17 cos(urﬂ)
(XIX-33)

s = M sin(urﬂ)

Egs. (XIX-33) have the solutions we have already written in Eqs.

(XIX-8) and (XIX-9).

Case D: d, & Arbitrary, g =4 =0

In this case, we set d =0 dIn Eq. (XIX-32) to find

s2 - slal(m - by(m] - e " = o0 (XTX-34)

This result is further simplified by noting that frem Eq. (III-18)

we have:
x -
bé(ﬂ) = (ai(n)) e tem .

s 1s therefore determined by,

s2 - sla](m) - (al(m)" e M) — 71T o g
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The evaluation of s only requires knowledge of the first

particular solution. Defining,

i
a solution for s is:
s = [ldyz +[1 - (wrz)zll/zle—iﬂ/2 (XIX-35)
where
Y2 = &, sin(ew/2) + a; cos(en/2)
Since

-i
s = e " = cos(um) - i sinfum)

we match real components of s and exp[~ium] to obtain the

expression for 1 given by Eg. (XIX-1l). A redundant expression

for

u is found by equating the imaginary components of s and

exp[~iuw] .



APPENDIX A, BSOME RESULTS CONCERNING LINEAR DIFFERENTIAL

EQUATIONS WITH PERIODIC COEFFICIENTS

This appendix will be devoted to an exposition of some mathe-—
matical results concerning systems of linear, homogeneous, first
order differential equations with periodic coefficients.

We will be concerned with systems of differential equations

of the form:

n
x, (£) = ]

j eij(t)xj(t) i=1, ..., n. (A-1)

1
For convenience we will let t be the independent variable and we
Will lét a dot over a function denote the first derivative of that
function with respect to t . The differential equation results in
this appendix have been taken from Moulton's excellent book on dif-
ferential equations,* which contains a generalization of the Poincaré-
Floquet theory. We will alsc have cause to refer to results from |
linear algebra and we will use Noble's book on this subject as our
reference oﬁ linear algebra.+

Before we specify that the Bij(t)'s in (A-1) be periodic, let
us make a few statements about the more general case of Ehe eij(t)'s

being arbitrary functions of t .

T

%*
F. R. Moulton {1930).

" B. Noble (1969).
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The broades£ statement of the mathematical problem we are faced
with is:

Find a set of functions {Ei(t)} (i=1, ..., n) which satisfy
equations (A-1) and let these functions be such that we may fulfill

the following conditions:
x;(g) = %X, . i=1, ...,n.

where tg 1s some arbitrary value of t and gi(t) evaluated at
typ equals some arbitrary number Eio + The functions, Ei(t) s
defined in this manner, constitute a ''general solution" to equations
(A-1).

Suppose we have found a set of functions which satisfies
equations (A-1). <Call this set {xil(t)} i=1l, ..., n . This set
of functions can be evaluated for t = t; and this set will satisfy
a particular set of initial conditions, i.e. whatever the value of

the functions 1s at t = tgp . This set is therefore called a

"particular solution" to (A-1).

Suppose that we have found (n - 1) more particular solutions so

that we now have a total of n sets of particular solutions. Call

them

{x (0}, (=, (03}, .ouy {xy (£)} i=1, ...y n .



It is possible to define a new set of functions '{ii(t)} i=1, ..., n
which is composed of linear combinations of the particular solutions,

Define this new set by the following equations:

n
&, () ) Cyx (t) i=1, ..o, n . (A2

The Cj's appearing in (A-2) are constants and therefore the
functions {ﬁi(t)} satisfy (A~1). But, does this mew set constitute
a general solution to the original problem? The answer is ''yes' if
and only if the constants, C, , can be chosen so that

]

Xi(to) = X i=1, ..., n .

where again the Eio are arbitrary numbers which correspond to

arbitrarily chosen initial conditions. The Cj's can he appropriately
#®

determined if and only if the determinant, D(t) , does not vanish

when evaluated.at t = tg . D(t) is defined through the following

expression:
x13(E) K1 (L) e e xln(t)
xp1(t)  xpp(e) ... x,, (€
D{t) = det . (A-3)
xnl(t) xnz(t) xnn(t)

®
Noble, Theorem 7.9, p. 209.



Thus if D(to) # 0, it is pessible to solve the algebraic
problem which determines the Gj's and therefore our newly defined
functions, the ii(t)'s » constitute a general solution to the problem
and the functions xi.(t) , which are the components of the %i(t)'s

are said to be a "fundamental set of solutions" to the original

problem.

This concept of a fundamental set is important from both a
practical and a theoretical standpoint. From the practical standpoint,
it 1is convenieht to seek the fundamental solution for which
xij(tg) = sij . Gij i1s the Krbneker delta and it is used in defining
a special fundamental set which obeys special, convenient initial
conditions. Once these initial conditions are specified we could
find the functions, {xij(t)} s Which obey them by direct numerical
integration of equations (A-1). D(tp) , in this instance, is just

unity and the determination of the C,'s for an arbitrary set of

3
initial conditions is a trivial matter. It will be seen as this
appendix unfolds that the concept of a fundamental set greatly
facilitates the theoretical analysis of differential equationms.
We need one result which will be used later. It concerns the
function D(t) which was defined by (A-3). It is: Theorem I: If

) %
D(t) is the determinant of a fundamental set of solutiong, then,

t =
D(t) = D{to)expif ) 8,4 (t7)dt’]
tg i=l

*
For a proof, see Moulton, pp. 234-235.



This result tells us that D(t) is finite and non~zero for all
values of t for which the Sii(t) are continuous (i.e., all values
of t for which the solution is defined). The result alsc tells us
that the function D(t) is the same {acide from normalization) for
all of the infinitely possible fundamental sets and that this
function, -D(t) » is dependent only wupon a constant times a function
of the diagonal coefficients of the original equations.

We are now ready to restrict ourselves to the case of intevest,

namely, let the coefficients in (A-1) have periodicity P , i.e.
eij(t) = eij(t + P) i,j=1, ..., n .

As an immediate consequence of the coefficilents having periodicity é >
we can show that if {xi(t)} is a solution to {(A~1), then {xi(t + P)}
is also a solution to (A-1). It is easy to demonstrate that this fact
follows from the periodic nature of the coefficients in (A-1)..

Suppoese that {xi(t)} satisfies (A~1). Let ue now show that

{xi(t + P)} also satisfies (A~1) by supposing it is true and then.
demonstrating that no inconsistencies arise. If {xi(t + P)}

satisfies (A-1), then

dxi(t + P)
dt

I i~18

Bij(t)xj(t + P) i=1, ..., n.

i=1

Changing variables to T =t + P we obtain: (as long as Bij(T).=

Bij(r -P))



dxi(T)
dr

t~14d
1}

[| N o
O
—~
A
N
B
~~
-
s

8,.(t - Pix,(7)
j2p i j
Thus, if {Xq(t)} is a solution to (A-1), then {xi(t + P)} nmust

alsc be a solution to (A-1).

Corollary

We shall now demonstrate that if Bij(t) = eij(t'+ P) , the
equations (A-1) always have at least one particular solution of the
form:

—-ipt
x,(£) = e "y () i=1, ..., n . (A-4)
where u is a constant and ‘yi(t) = yi(t + P) .

The demonstration proceeds in two steps:

(a) The first step is to find the differential equations for
the yi(t)'s and to make sure that these equations are such that
y, () - y, (€ +P) =0 forall i.

(b) The second step is this: we must make sure that the functions
which we want to test can be expressed as appropriate linear combinations
of some functions which make up a set of solutions which ié known to be a
fundamental set. We must therefore see if the algebraic problem of
finding the linear expansion coefficients has a solufion. This step,
as well as step (a), will hopefully be illuminated by what follows.

We must now substitute (A-4) into (A-1) to get equations for the

v;(t)'s . These equations are:



) n
ACEE AP (4-5)

If, by hypothesis, yi(t) = yi(t + P) , then it must follow that:
L) - - + = “‘f
Yi(t) Yi(t P) 0 (A~5)
Evaluating (A-6) by using (A-5) and the relations:
y;(8) = y,(c+P); eij(r.) = Bij(t+P)
we can see that (A-6) is satisfied.
To show that satisfying criteria such as (A-6) is no trivial

matter, let us suppose that there is a particular solution to (A-1)

of the form:
. _—i e
r(0) = Py ) 1=1, ...,m (4-7)

where y 1is a constant and yi(t) = yi(t + P). With this choice of

functional form, the equatiomns for the yi(t)'s are:

1
y;(®) = 2duey (&) + ]

L @ ©

If the yi(t)'s are to be periodic, then it must be true that (A-6)

is obeyed. Evaluating (A~6) we find that:

2uPyi(t) = 0 for all 1,



Since P does not equal zero and not all yi(t) =0, then ¢
must be zero and therefore a particular solution of the form (A-7)
does not exist for u not equal to zero. This result is to be
contrasted to the result we obtained by applying (A-6) to form (a-4},
namely, a particular solution of form (A-4) for non-zero li can
exist (at least as far as criterion (A-6) is concerned).

We must next decide whether a solution of form (A~4) can be
expressed in terms of fundamental set of solutions. We will attecpt
to express it in terms of the fundamental set for whichl

*
xij(to) = Gij . Call this fundamental set {9 (t)} . Thus if

13

xij(t) = ¢ij(t)

. R ¢ - - A ) = |
the ¢ij(t) s satisfy (A-1) and ¢ij(t°) sij . If

{xi(t) = efiutyi(t)}is to be expressed in terms of {$ij(t)} , then
it must be true that
- t n
- oiut. e . _
y; (£) e .[ Cj_“’ij“‘) i=1, ..., n. (A-8)

i=1

where the Cj's are constants. By nypothesis,
Yi(t + P) - yi(t) = 0 i=1, ....n. “ (A-2)

Substituting (A-8) into (A-9), we get the n equations

Fal
These $'s are not to be confused with the "uncapped" ¢'s in the

main body of the report.



. n . n
emu(t+P) Z C.$i.(t +P) - elut z C'$i'(t) = 0
i=1, ..., n. (A-10)
If we require that t = tp and define g = efl“ﬁ we can write (A-10)

as (A-1l) if we utilize the following property of the fundamental set:

%ij(to) =8y -

n
Zl cj[$ij(tn +B) ~s81 = 0 i=1, ..., n . (A-11)
j:

(A-11) is the equation for the Cj's which must be satisfied. If a

solution to (A-1l1) exists, then we can express our assumed functional
form of solution in terms of a fundamental set and thus our assumed
form of solution is indeed a solution. (4-11) is nothing but an
eigenvalue-eigenvector problem and, as is well known,* there is a

solution to (A-11l) if and only if the following determinant vanishes:

Pty +P) = s Prolty + P) ... $ln(to + P)
Fa1(tp + P) $2z(t:o +P) -s $2n(t0 + P)
det . . . . . . R . . .
A ~
oy (0 + P) ¢ ,{t0 + ) cee B (g +P) - s
(A-12)

®
Noble, Chapter 9.
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g 1s to be chosen by expanding the determinant and thereby obtaining
a polynomial in . If s is set equal to a root of this
polynomial, (A-12) vanishes. The lead term in this polynomial is,

*
0 s just the determinant

of course, sn . The coefficient of s

of the n x n matrix which has ag its 1i,j-th element Qi_(to + P)
1

But this matrix is just a matrix of a fundamental set of solutions

and therefore its determinant can never be zero or infinite. (See

Theorem I and the discussion which follows it.) Since the coefficients

of the: terms in sm(m l, ..., n - 1) are composed of sums of the
products of various $ij(t0 + P)'s , from Theorem I we know that
these coefficients can never be infinite (it is possible, however,
to have them equal to zerc). Thus the characteristic polynomial
equation is of the form:

n-i

n ..
s + (finite terms in s s saes gl )+

(a number not equal to zero or infinity)

Thus s can itself never be zero or infinity. So then, there must

be a finite, non-zero s such that (A-11) can be solved for the Cj's .
This of course means that what we set out to demonstrate 1s indeed

true, namely, there does indeed exist a particular solution to (A-1)

of the form given by (A-4).

*®
Noble, Theorem 9.1, p. 280.



A-11

Coroliary .

Note also that knowledge of s does not completely determine

U . Suppose that we have values of u and s (call them u; and

s8] respectively) such that s = e_iulp is satisfied. If we define
anew u, call it u' , by u' = y; + E%E- {n = zero or any integer),
then s} = e“iu'P is also satisfied. Thus 1y 1s not determined up to
an additive factor of E%E_‘ However, this in no way cﬁanges our

(e7tt

result since if we say that yi(t)} is a solution which has

the form of periodic functions nwultiplied by a linear exponential term,

' l ~1{uy+ zﬂi)t
then {e P yi(t)} is also a solution which has the form of
periodic functions multiplied by 2 linear- exponential term. Wa can

therefore ignore this indeterminacy in u .

The crucial point in the argument that our sﬁpposed solutiﬁns
exlst was the existence of a non-zero, finite roét to the
characteristic polynomial equation. But, if we have one such root
to the n-th degree polynomial, we must necessarily have a total of
n  such roots (some of which may be repeated). We will now direct
our attention to the consequence of the.characteristic pelynomial's
having n roots. We will limit ourselves to the following two cases?

(a) all n roots are distinct.

{b} (n - 2) roots are distinct and one root is doubly
degenerate.

We could treat the more general caée of the number of distinct

roots being arbitrary and the number of repeated roots as well as
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their degeneracy being arbitrary, but since the Important features of
the general case are displayed in this restricted case of ome double
degeneracy, we will just treat cases (a) and (b).

Case (b) must actually be broken ﬁp into two subcases, since, a
doubly degenerate eigenvalue may have only one linearly independent
eigenvector associated with it, or, it may have two linearly
independent eigenvectors agsoclated with it.** If there are two
linearly independent eigenvectors associated with the root sn_1 s
(call this case (b-1)), then if we form the determinant (A-12) with
8 set equal to 8 -1 ° all first minors will be equal to zero., If

there is only one linearly independent eigenvector associated with

the root s (call this case (b-2)), then if we form the

n-1*
determinant (A-12) with s set equal fo Sh—q * there will be at
least one first minor which will not be equal to zero.

To tie up this appendix with.the two-level system and the main
body of the report, we wiil note at this point that case (a) yields
what we have called "Form I" solutions (see (III-4) and (III-5)).
Case (b-1) gives rise to the "Form IL" soluﬁioné (equations (IITI-7)
and (III-8)). Case {(b-2) will correspond to the "Form III" solutions
which are given by equations (III-10) and (III-11).

For case (a), we can write the following theorem: Theorem II:

If (A-12) has n distinct roots, then there are n solutions to

(A-1) of the form:

The general case is treated in Moulton, Chapter 17.

k¥
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- -1y ¢

{xik(t) = @ k Yik(ﬁ}} i,k = l, eesy I1 o
The indices are such that ;Eik is the i-th function in the k-th
solution. uk 1is a constant and the k-th u 1is distinct from all

other u's and yik(t) = yik(t +P) (i,k=1, ..., n) . The set
{iik(t)} is a fundamental set of solutions to (A-1). The k~th
solution may be called the k-th Floquet or normal mode.

The application of this theorem to the two-level problem is
this: one possible functional form of -the solutions to (II~4) aﬁd
(II-5) is what we have called "Form I" and have written 1n equations
(I11-4) and (III-5).

This theorem is not difficult to prove. The fact that there
are n solutions of the desired form follows from the hypothesis

that (A-12) has n distinct roots. Order these roots as

{s1, 82, ..., Sn} . Since there are n distinct values of Sy 3

there must be a value of uk associated with each Sk such that the
uk's are distinect and no two differ by Egﬁ {n any integer or zero).
Also associated with the root, Sk s 1s an eigeﬁvector (Clk’ Czk’

«evy C.) . The root and its eigenvector are related by equation

nk
(A~13) which is just equation (A~1l) rewritten for the k-th root and

its eigenvector.

I
o
[N

]
ol
-

n
Z veas . (A-13)

2 -
i cjk[cpij {t + P} aijsk]
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Since the Cjk's express a solution of the desired form in

terms of a fundamental set, it follows that we have n such

solutions. They expliecitly are:

-~ -iuyt
the first {xil(t) = o M1ty

n
NOR jzl ¢, B ®) 1=1, ...,

n
- ~just .
the second {xiz(t} = g 1H2 yiz(t) = jzl Cj2$ij(t)} i=1, ..., n
iURE & A
- -y _ o
the n-th {xin(t) =g -0 yin(t) j£1 Cjn¢ij(t)} i=1, ..., n
(A-14)

But now we ask, "Do the xij(t)'s form a fundamental set of
solutions?” We want a '"yes" answer to this question and we get it by

forming the matrix X(tg) (where (g(to))ij = iij(to) ) and by then

i
showing that its determinant is non-zero. By the discussion preceeding

Theorem I, we know that if det|X(ty)| # O , then the iij(t)'s are a

fundamental set of solutions. Knowing that the @Ej(t)'s have been

defined so that $Ej(t Y= 8 » We can use (A-14) to find that

1]

(g(to))ij = €., . Thus the j-th column of X(tg) is just the

1]
eigenvector associated with the j-th root of (A-12). The columns of
g(tg) are therefore linearly independent because of the fact that the

eigenvectors of a n x n matrix which has n distinct eigenvalues are

¥%
linearly independent, Because the determinant of a matrix with

*
Noble, Theorem 9.3, p. 281.
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linearly independent columns can never vanish, we have the result

that detlg(to)] # 0 and therefore Theorem II stands confirmed.

Example Al:

In order to illustrate Theorem II, let us consider an example
of a simple system to which it applies. This example is included
at this particular juncture both to clarify the method of demonstration
we have used and to clarify the notation used in the method. Let the

system be:

x1(t) = cost xy(t) + ax,(t)
(4-15)
xp(£) = - axy(t) + cost x,(t)
Let o be a constant not equal to - n equal to zers or

any integer).
*
To solve this system of equations we can use Kamke's
prescription for solving equations of this type, or we can simply

note that if we let
x; = xjexp[sin t], x; = =xjexp[sin t],

(A-15) becomes

*
Kamke (1943}, p. 611, Vol. 1.
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We therefore have

. 2 -
x{ +o°x; = 0
which is easily solved by elementary methods te yield the two
solutions for x; and =% which are given by (4-16).

i in t
solution I -[cos(m:)eS:m t 7 - sin(at)es moEy

{A-16)

sin t sin t

solution II {sin{at)e : cos(at)e

}

That these solutions form a fundamental set may be easily demonstrated

by using the definition in (A-3) to form D(t) :

D{t) = exp[2sin t]

D{t) can never equal zero, thus (A~16) forms a fundamental set and,
for tp = 0, the fundamental matrix of these functions is the unit

matrix. We can therefore make the following identifications:

sin t sin t

.$12(t) sin(at)e

$11(t) cos (ot)e

~gin t in t

- gin(at)e

n

$21(t) $22(t) = cos(at)e®
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The notation is such that if we were to arrange the 3 functions

into a matrix, the i,j-th % would be the i-th function in the
j-th solution. According to what has gone before, to see whether
we have a solution of the e_iu;y(t) form, we must find the roots of
(A~12). P for this example 1s 27 , and, as we have already said,

tgp 1is taken to equal zero. We therefore have:

cos(2ma) - s sin(2mwa)
det = 0 (A-17)
- sin{2wg) cos(2ma) - s

(A-17) has the solution s, = exp[t2ira] . Since s = exp[-iyP] , we
have two values of 1 not differing by an integer or

zero and we therefore expect two solutioné of the ehiuty(t)'form
which will form a fundamental set of solutions., If we call

Hp = -« and W = @ , it can be easily shown that associated with

M1 1is the eigenvector
(1,1} = (C11,C21)
Associated with W, dis the eigenvector
(1,-1) = (C12,C22)

Using the notation of (A-14) and the results so far obtained in
this example, we can explicitly write the Floquet Normal Mode

Scolutions:
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- iot sint ~ . iot sint
{x11(t) = e “te ; Xp1(t) = e e }
(A-18)
~ =1 i ~ -iat t
[%12(8) = e lat251nt; Sp0(t) = -ie o esin }

We can make the following identifications for this simple example:

. . sin t
Uy = —Hg = a3 y11(t) = yio(t) = —iyp1(t) = iyys(t) = e

Thnat the solutions of (A-18) form a fundamental set may be demonstrated
by evaluating D(t) . It explicitly is:

D(t) = -21e231n t

It can be easily seen that D(t) can never equal zero, and therefore,
the Floquet jlormal Mode Solutions are a fundamental set of solutioms.
This concludes the discussion of the example.

We can now proceed to consider case (b—li. Conslderation of
(b-1), leads to the following theorem which we are calling Theorem III.
The application of this theorem to the two-level system is this: there
is the possibility of having a solution of "Form II", where, "Form II"
is given by equations (III-7) and (III-8). These equations can be

found in the main body of the report. Theorem III: If (A-12) has only

{(n -~ 1) distinct roots because the (n - 1)-th root is doubly

degenerate and if there exist two linearly independent eigenvectors

associated with the doubly degenerate root, 8 .1 2 then there are

{(n - 1) solutions of the form:
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i=1, ..., n
()} (A-19)
k=1, ..., n-l

and, there 1s an additional solution of the form

%, () = ™M1y () i-1, .,m (4-20)

The u's are constants and there is a total of (n - 1) distinct

2 .
u's not differing by —%} ( k equals to zero or any integer).

For all yik(t)'s it is true that

1]
i_l
-
=]

Y t) =y, (£ +P) i,k

The set of solutions composed of solutions (A-19) together with
solution (A-20) forms a fundamental set of solutions to (A-1).

The proof of Theorem III is simple. In outline, it consists
of realizing that since we can find (n - 1) eigenvalues with n
associated eigenvectors for (A-12), we can get the n solutions
given by (A-19) and (A-20). Since the eigenvectors associated with
the degenerate root are linearly independent of each other and since
eigenvectors of distinet roots are also linearly independent of each
other, all n eigenvectors taken together form a linearly independent
set of vectors. Utilization of the same chain of reasoning we used in
discussing Theorem II tells us that (A-19) and (A-20) taken together

form a fundamental set of solutions to (A-1).
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Example A2:

A simple example of a non-trivial problem which has the type of

solution described by Theorem III is the following

I}

il(t) axi(t) + cos t xy(t)

(A-21)

ig(t) - cos t x1(t) + axp(t)

Let o be a non-zero constant not equal to im (m any integer or
*

zero). The solution is obtain by using Kamke's prescription. His

prescription directly yields a set of fundamental solutions which,

when evaluated for t = tg = 0 , yield the unit matrix:

t
e sin{sin t)

() = eutcos(sin t) P ()
{(A-22)

ot | \ t .
-e sin(sin t) $§2(t) = &% cos(sin t)

$21(2)

We can also solve (A-21) by defining the new functions x{(t)

and x;(t) by,

y ot ) ot

(A-21) now becomes

|- ' = !
X xzcos t , Xq xlcos t

*
Kamke, Vol. I, p. 611.
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or

dx;/d(sin t) = =x} , dx}/d(sin t) = =3

S

so that
dzxi/d(sin £)2 + xi = 0.

This second order equation may be solved by elementary methods to
recover the solutions obtained by Kamke's prescriptionm.

The indices on the @'s which appear in (A-22) have again been
chosen so that $Ej(t) is the i-th function in the j-th set of
solutions. Since P = 27 , (A-12) for this particular example

becomes:

exp(2ma) - s 0
det = {
0 exp(2ma) - s

s 1s obviously doubly degenerate and equal to exp(2rwa) .
Associated with s are the following two linearly independent
eigenvectors: (1,0) and (0,1) . The Floquet Normal Modes, then, are
just the solutions given in (A-22) and therefore the Floquet Normal
Modes form a fundamental set of solutions to equations (A-21). 1In
addition, for this simple exaﬁple, we can make the following

identifications:
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W=ia; yy1(e) = ya2(t) = cos(sin t) ; -yp1(t) = yj12(t) = sin(sin t)

and iij(t) = eaty (t) i,j=1,2 .

ij
With the example concluded, we can now proceed to "case (b-2),"
i.e., the matrix in (A-12) has a doubly degenerate eigenvalue and this
eigenvalue has one and only one linearly independent eigenvector
associated with 1t. The theorem which applies in this case is
Theorem IV and from it we obtain the "Form III" solutions which are
given by equations (III-10) and (III-11) in the main body of the

report. Theorem IV: If (A-12) has only (n - 1) distinct roots

because the (n - 1l)-th root is doubly degenerate and if there exists

one and only one linearly independent eigenvector associated with this

doubly degenerate root Sn—1 , then there are (n - 1) solutions of the

form.

i=1, ..., n

(&, () = e_iuk;yik(t)} (A-23)

and, there is one additional solution of the form

(e = ey o)+ ey, (0]) 1

K

1, ..., n . (&~24)

The u's are constants there is a total of (n - 1) distinet u's not

34

differing by *= ( k equal to zero or any integer). For all

t .
yik(t) 8 :
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yik(t) = yik(t + P) i,k=1, ..., n .

It 1s true that the set of solutions composed of solutions (A-23)
together with (A-24) forms a fundamental set of solutions to.(Arl).
Proving this thecrem is a more difficult task than proving
Theorem III. From the arguments given in the proof of Theorem II,
we know that the first (n - 1) solutions which are given by (A-23)

are indeed solutions and do form (n - 1) linearly independent
solutions. To complete the proof of Theorem IV, then, we must show
that (A-24) is indeed a particular solution by seeing if

(a) the equations for the yin(t)'s are consistent with the
presumed periodicity of the yin(t)'s » 1.e., does
Yin(t) =¥, (E+P)=0 foralli=1, ..., n?

(b) the xin(t)'s can be expressed in terms of the

?

ij(t)'s s L1.e., the unit diagonal fundamental set.
We must then show that the n solutions described by (A-23)

and (A-24) taken together form a fundamental set of solutions.

The reader should note that whenever the index n is used in
the following discussion, it always refers to the dimensionality of
the original problem as stated by (A-1). It is never used as a
running index. We further always call the solutiom given by (A-24),
the n-th solution.

In what follows, we will presume that the solutions given by (A-23)
are known and therefore the Cij's are known for 1 =1, ..., n and

j=1, ..., n-1 . Define the n x 1 columm vectors, C, , by:
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C_.
ny )

From the arguments used in the discussion of Theorem II, it is
known that these vectors, C, (1 =1, ..., n-1) , form a set of
n — 1 linearly independent vectors.

In proving Theorem IV, the first thing we will ask is: is

the periodicity condition
Yin(®) -y, (t+P) = 0 =1, ..., n (4-25)

fulfilied? The answer is "yes'". To show this, start off by
substituting the particular solution (A-24) into (A-1) in order to

obtain:

= ] T -
Y, (8D in by (8 + tyi,n_l(t); yi,n-l(t)

I
-ty oo (0 + jgl 813y () + ey, | (B)]

i=1, ..., n. (4~26)



A-25

Evaluating (A-25) through use of (A-26), and, using the relationships

= : = + i,j = “ o
eiJ(t + P) eij (£) Yi,n_;(t) yi,n—l(t P) 1] 1, » 0

we obtain:

YooYy (8) =y (e +P) = Ply, 8y Ty () (a-27)

!
I~

eij(t)yi,n~1(t)

But, because of the differential equation satisfied by the yi,n_l(t)'s
(see (A-5)), the term on the right-hand side of (A-27) which is in
brackets vanlshes. Thus, condition {A=-25) is fulfilled.

We must now find out whether or not the particular solution
given by (A-24) can be expressed in terms of the unit diagonal
%,

fundamental set we called the 15 s . This is equivalent to finding

out whether there exists a set of constants, Cin » Such that

n

7 (8 = -El Cinbys (®) = TRy 0y @)
J= 3

i=1, ..., nn . (4~28)
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From equation (A-28), we get that

n
- _ -1t "
yin(t) tyi,n-l(t) Te jzl jn¢ij(t)
i=1, ..., n. (A-29)
We next impose the condition:
yin(to + P) - yin(to) = 0 i=1, ..., n. {A-30)

By utilizing the fact that G&j(to) = dij and by imposing condition
(A-30), we find that the Cjn's must obey the following set of

equations:

H s )

) - - —ty,_1 (£ +P)
RN [d»ij (kg + P) sn_léij]Cjn Pyi’n_l(tg + P)e

i=1, ..., n. (A-31)

The term on the right-hand side of (A-31) may be related to the

Cj n_l's by the following considerations. We know that
3
y (tp + Pye tn-1(Eo?P) _ IZI C T (tg + P)
i,n-p "0 51 3,n-174i3 "0

i=1, ...y o .
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But, by hypothesls, the Cj n_l's are such that
1

Z € ey [Py k0 +B) = 8,58 1 = 0 i=1, ooy m .

We therefore have that

n
Sn—1Ci,n—1 - z J,n-1¢13(t0 +E) teleem
j=1
We can now rewrite (A-31) in matrix form as:
g - N “ . . < 1f ) {
[11511 s __ b12 ¢1n Cin Cl,n—1
A A — » - - A
$21 %22 ~ 8, (T C, C2,n—2
- - a o« . . - = PS L3
=1
-~ FAS o
L ¢n1 ¢n2 ¢nn Sn—lJ CnnJ LCn,n-lj
(A-32)

In reading (A-32), the reader should take note that the suppressed
argument of all the @}j's is (tp + P) . (A-32) is a non-homogeneous

linear equation for the Cjn's and to see if it has a solution, it is

convenient to cast the problem into matrix notation. Define the

>

n X n matrix 4 by (ﬁjij = ﬁEj(tg +P) . If the nx 1 column
vectors Cj are defined by letting the i-th row of the j-th vector be

Cij » then, in matrix form, (A-32) becomes:
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P -s _c = Ps__ ¢ (A-33)

By hypothesis, has n - 2 non-degenerate eigenvalues and one

-5

doubly degenerate eigenvalue and, for such a matrix, there exists a

*
non-gingular matrix R such that

B8R = v
The matrix V dis given by:+

[ s 0 . . 0 0}

0 S5a - ° 0 0
v = (A-34)
0 0 . . s v
n-j

0 0 . . 0 S

\ n—1

where v (for our supposed case of there being only one linearly
independent eigenvector associated with the root Sn—l ) is some

non-zero number. It is easy to see that V has the same eigenvalues

*
To deduce this result, see Noble, Theorem 11.7 (p. 352) and 11.8

(p. 354).
In the V matrix all off-diagonal elements are zero except the

((n - 1), n)-th element which is v .
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as . It is also easy to see that the eigenvector associated with

2255

the eilgenvalue Sj {(i=1, ..., n) is ej where e, is the n % 1

column vector which has all elements zero except the j-th which is

unity. In particular we have, that, if I is the n X n unit matrix

-~
B4

I
[w

(V- s De (A-35)

n—iz -~n-—1
and, further, &1 is the only eigenvector of V associated with
the eigenvalue s +  Premultiplying (A-33) by 3_1 (we can do

n-=1J

this because R 1s non-singular), we can write (A-33) as,

R-19RR-lc - s R-lc = Ps Rlg (4-36)
2 T ~I1 II=1=x I n—1=z ~N—1
Because C is an eigenvector of '@ associated with

eigenvalue S, 7 Ve have the following relationships:

A o= _ -1 = -1 - -1

($ Esn—l)gn—l (§B Esn—l)g E:n-l ‘ (5 @B gsn-l)g gn~1
= = v - -

0 = G-Isp ey (A-37)

We may therefore identify Bhlgn_l with gn_l and (A-36) therefore

becomes:

-10 - _]-- = —

VRl ) -8 (RTLeC) N (A~38)
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%
Showing the explicit structure of (A-38) in (A~39),

- - ‘r "'1- . ) )
CA 0 0 0){(r 1), [ o
0 sp-s,_, * * 00 (5_1'9:1)2 0
= (A-39)
.. -1,
0 0 O VI EG) | (P
0 0 - - 0 O} @) 0
g JU'= ~“n'n | \ )

it is easy to see that (A-38) can be solved for (5_1.9n> : the
(n - 1)-th element of (B‘l-gn) is arbitrary and the n-th element
of (5‘1-§n) must be equal to Psn_llv . Since P and v are by
hypothesis non-zero and since sn_1 can never be equal to zerc (see
arguments in the discussion of Theorem II), CE—I.gn)n can never be
equal to zero. gn is recovered from (E—l.gn) by simply premultiplying
(5‘1-9n) by R . Since a non-singular n % n matrix multiplying a non-
null n x 1 column vector can never yield as a product the null n x 1
column vector, a non-null Qn exists. Thus we have proved what we set
out to prove: Theorem IV is true insofar as there is a particular
solution of form (A-24).

We have one simple task left, namely, to prove that the solutions

(A-23) together with (A-24) form a fundamental set of solutions to

*
In the n x n matrix of (4-39) all off-diagonal elements are zero

except the ({(n - 1), n)-th element which is v .
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(A-1). 1t is easy to see that (B_l'gn) and e - are linearly
independent: 1.e., there exists no non-zeroc scalars, o; and

as , such that

-1 -
R *- + o = 0
al(: gn) 2 gn-l

From this it follows that there exist no non-zero scalars, o;

and o , such that

-1, = = -
5[&1(5 gn) + azgn_l] algn + azgn-l = 0 (A~40)

Thus Cn and Cn_l are linearly independent. Since the set of

vectors Cj1, Co, ..., gn—l form a linearly independent set and since
gn and gn—l are linearly independent, it follows that the set of
vectors Cj, Co, ..., Cn form a linearly independent set of wvectors.

From this fact, the reader can use the arguments already used in
Theorems II and III to establish that the set of particular solutions
composed of the solutions (A-23) and (A~24) form a fundamental set
of solutions to (A-1). For the two-level system, these solutions
correspond to what we called "Form III" in part II of the main body
of this report.

The preoof of Theorem IV being complete, we will conclude this
appendix by giving a simple system of differential equations governed

by Theorem IV,
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Congider a system of differenti

A-32

al equations given by (A-41).

(&) = (3 - sin t)x(t) - Y%z, (t)
(A-41)
x(t) = baxi(t) - (4 + sin t)x, (L)
We can solve (A-41) by first defining xi and xé through:

x) xjexp(cos t) ;

(A-41) becomes:

ASE

Y _
3]

Since xé 0 , it must be true

an arbitrary constant. From this it

solutions for the functions {xi,xé}
kt

v Kt . 1

%1 > tes K

We can now recover the most general

X é%£.+ c)exp(cos t) Xp

X; = x!exp(cos t) .
2 2

)
g

xé) =
that x! - xé = k where k is

follows that the most general
is:

kt

{c - k)Y +

solution of (A-41) as:

kt
>

= [(ec - k) + exp(cos t) .
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With x; and x; known, we can let tj = 0 , and find the unit

diagonal fundamental set of solutions which are given by:

cos t cos t

-(2e)"lte

]

(2e)7 1t + 2]e F12 ()

Bry1()

cos t cos t

(2e) " lte (2e)~ 12 - t]e

o1 (1) B2z (t)

(A-42)

For these fundamental solutions, the fundamental matrix (Equation

(A-12)) with typ =0 and P = 27 becomes:

T+ 1-=8 -7
det = 0 (A-43)
T l-1m-38

(A-43) is easily solved for s and we find that (s - 1)2 = 0 .

Hence, & 1s doubly degenerate and equal to one. Only one linearly

independent eigenvector can be found for s = 1 and it is:
(L,1) = (C11,Cay1)
We therefore have a first particular solution which has the form:

x11(6) = Cr11(e) + Co,(e) = (e)le®OS E
(A-bb)

il

;:21(1:) = Clla}zl(t) + (;21’&,\22(1:) (e)_lecos t



A-34

(A-44) is a solution of the form given by (A-23). Since =& = e~ HHE

we can make the following identifications:

e 3 voi1(t) =

[

uo= 03 yn() =

The other Floquet Normal “hde can be found by solving (A-32)

written for this example:

T ~m{{Cyp L
= 27 (A~45)
m =T C22 1

(A-45) has a solution and it is:

Ciz2 = Cyp = 2

There is a degree of arbitrariness in (A~46), but we can say that
Ci2 and Cz; can never both be zero. Thus (Cy5,Cs5) and {Cy;,
C21) form a linearly independent set of vectors. This is, of
course, what is expected on account of our discussion following
Theorem IV. For simplicity, choose (C;12,Cp5) = (2,0) . Using
relationships analogous to those given by (A-44), we obtain the

seccend normal mode:

cos t cos t

x30(t) = (e)71[2 + t]e 5 Koa(t) = (e)~lte
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To put meat on the bare-boned expressions used in Theorem IV, we can
make the following identifications:

-1 cos t
e”le 5oyaolt) = 0.

Yiz = 2
To demonstrate that the X(t) solutions form a fundamental set of
solutions, form a matrix composed of the #(t) functions, take its
determinant and show that the determinant can never vanish. F¥or the

simple example at hand,

x31(t)  Xya(t)
det = -

Xp1(t) EHpp(t)

2 COS T
£ o2 #

o2 0 for all t .

Thus, the %(t) functions do indeed form a fundamental set of
solutions.

One final word is in order. Because the vector (Cj,,Cy,) 1is
non-zero but not unique, the yiz(t) functions can never be both
zero, but, they are not unique. They, however, will always be periodic
(this follows immediately from Theorem 1IV).

The Floquet modes may be simply related to the general solution
which we have written down immediately preceeding (A-42). To recover
the first mode, we merely let k=0 and let C = (e)~! . The

second Floquet mode may be recovered by letting



APPENDILX B: THE EQUATIONS FOR a*a, b*b AND a*b

In this appendix we derive and briefly discuss the equations
for the functions a%*a, b*b and a*b .

Define the functions P , Q and R by:

P(1t) = a*(r)a(t) ; Q1) = b*(1)b(1) ; R(t) = a*(r)b(r)

(B-1)

By differentiating P, Q and R and by using Egs. (II-4) and (II-5),

we find

. *

P = 2iccost[R -R]

. &

Q = -28Q + 2iocosT[R-R ] {B~-2)
R = -i(e-i8 + 2BcosT)R + 2iacost[Q-P]

‘ *

Although Eqs. (B-2) are equivalent to Egqs. (II-4) and (II-5), they
are just as intractable as Egqs. (II-4) and (II-5). When & =0 ,
Eqs. (B-2) are, however, related to the easily visualized problem of

a constant length magnetic moment vector rotating in space under the

influence of a classical magnetic field.

*
Assume P, Q and R are known. The ratioc, b{tr)/af{t) , is obtained

by [b{t)/a(1)] = [Q/R]*° Knowing b{t)/a(t) , a(t) and b(r) are

found by using Eqs. (VIII-27).
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Feynman, Vernon and Hellwarth (1957} have shown that for §

=0,
Eqs. (B-2) are equivalent to the classical vector equation:
T ,
46D =y 2D (8-3)

If w(t) corresponds to a magnetic field and E(T) corresponds to

a fixed length magnetic moment vector, the motion of the magnetic

%
moment is found by solving an equation of the form of Eq. (B-3).

To demonstrate this, let

r{t)

®+R)% + 1(R -R)F + (P-Q)7 (B—4)

w(t) = hocostx - [e + 2Bcostlz (8-5)

where §, § and z are the unit vectors in the X, y and z directions

respectively. Simple substitution of Eqs. (B~4) and (B-5) in Eq,

(B-3) demonstrates the validity of (B~3). That the vector is a

constant length vector is demonstrated by moting that

L2+ n@-R12 + @92} = 0.

See, for example, Goldstein (1965), pp. 176-178. Or see, Pople,

Schneider, and Bernstein (1959), Sect. 3-3.
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